1.2 DataX 数据同步工具详细介绍

DataX 是阿里巴巴开源的一款高效的数据同步工具,旨在实现多种异构数据源之间的高效数据同步。以下是对 DataX 的详细介绍:

架构

DataX 的架构主要包括以下几个核心组件:

  1. DataX Core:负责任务调度、插件加载、日志管理等核心功能。
  2. Reader Plugin:用于从数据源读取数据,不同的数据源对应不同的 Reader 插件。
  3. Writer Plugin:用于将数据写入目标数据源,不同的数据源对应不同的 Writer 插件。
  4. Transformer Plugin:用于在数据传输过程中进行数据转换。

DataX 的架构图如下:

+-------------------------------------------------+
|                     DataX                       |
|  +---------+    +--------------+    +---------+ |
|  |  Reader | -> | DataX Core   | -> |  Writer | |
|  |  Plugin |    | (Engine,     |    |  Plugin | |
|  |         |    |  Scheduler,  |    |         | |
|  |         |    |  Transformer |    |         | |
|  |         |    |  Plugin)     |    |         | |
|  +---------+    +--------------+    +---------+ |
+-------------------------------------------------+

基本工作流程

在这里插入图片描述

DataX 的工作流程可以分为以下几个步骤:

  1. 配置任务:用户通过 JSON 文件配置数据同步任务,包括数据源、目标数据源、数据字段映射等。
  2. 任务调度:DataX Core 解析配置文件,加载相应的 Reader 和 Writer 插件,并开始任务调度。
  3. 数据读取:Reader 插件从数据源读取数据,并将数据传递给 DataX Core。
  4. 数据转换:如有需要,Transformer 插件对数据进行转换。
  5. 数据写入:Writer 插件将转换后的数据写入目标数据源。
  6. 任务结束:数据同步任务完成,DataX 生成任务报告,记录任务执行的详细信息。

使用场景

DataX 可以应用于以下几种常见的数据同步场景:

  • 数据库间数据迁移:如 MySQL 到 Oracle,PostgreSQL 到 MySQL。
  • 大数据平台数据同步:如 HDFS 到 Hive,Hive 到 HBase。
  • 云服务数据迁移:如 RDS 到 OSS,OSS 到 S3。

优越点

DataX 作为一款数据同步工具,具备以下优越点:

  1. 高效稳定:DataX 采用多线程并发处理机制,能够高效地完成大规模数据同步任务。
  2. 易于扩展:通过插件机制,DataX 可以轻松支持多种数据源的读写操作。
  3. 配置灵活:使用 JSON 格式的配置文件,用户可以方便地定义数据同步任务。
  4. 支持多种数据源:内置了丰富的 Reader 和 Writer 插件,支持常见的数据库、大数据平台和云服务。
  5. 良好的监控和报警机制:DataX 提供详细的任务日志和监控功能,便于用户监控和诊断数据同步任务。
  6. 开源免费:DataX 是开源项目,用户可以免费使用,并根据需要进行二次开发。

下面,让我们通过一个具体的案例来了解 DataX 的运行流程:使用 DataX 同步 MySQL 数据到 Hive。

案例:同步 MySQL 数据到 Hive

1. 案例背景

假设我们有一个 MySQL 数据库,其中有一个表 employees,包含员工信息,我们希望将这个表的数据同步到 Hive 中进行数据分析。

2. 环境准备

  • 确保已经安装了 Java 环境,因为 DataX 是基于 Java 开发的。
  • 下载并解压 DataX 工具包到本地目录。
  • 确保 MySQL 和 Hive 服务都是可访问的。

3. 编写 DataX 作业配置文件

创建一个名为 mysql2hive.json 的配置文件,内容如下:

{"job": {"setting": {"speed": {"channel": 1}},"content": [{"reader": {"name": "mysqlreader","parameter": {"username": "your_mysql_username","password": "your_mysql_password","connection": [{"jdbcUrl": "jdbc:mysql://your_mysql_host:3306/your_database","table": ["employees"]}],"column": ["id","name","age","department"]}},"writer": {"name": "hivewriter","parameter": {"username": "your_hive_username","password": "your_hive_password","connection": [{"jdbcUrl": "jdbc:hive2://your_hive_host:10000/default","table": ["employees"]}],"writeMode": "insert","hadoopConfig": {"fs.defaultFS": "hdfs://your_hadoop_host:9000"},"column": ["id","name","age","department"]}}}]}
}

代码解释

  • speed:设置同步速度,channel 表示并发数量。
  • reader:配置 MySQL 读取器,包括数据库连接信息和要同步的表及列。
  • writer:配置 Hive 写入器,包括 Hive 连接信息和目标表及列。writeModeinsert 表示插入模式。

4. 运行 DataX 作业

在命令行中,进入到 DataX 解压目录的 bin 目录下,执行以下命令来运行 DataX 作业:

python datax.py ../json/mysql2hive.json

5. 监控 DataX 作业

运行 DataX 作业后,你将看到实时的任务执行情况,包括已读取的记录数、速度、错误记录等。DataX 也会生成日志文件,你可以在 log 目录下查看。

6. 验证数据同步结果

同步完成后,你可以在 Hive 中查询 employees 表,验证数据是否已经成功同步。

7. 注意事项

  • 确保配置文件中的数据库连接信息、用户名、密码、表名和列名都是正确的。
  • Hive 写入器需要 Hadoop 环境配置正确,包括 Hadoop 配置文件和 HDFS 地址。
  • 根据实际环境和需求调整并发数(channel)和其他参数。

通过这个案例,你可以看到 DataX 的强大功能和灵活性,它可以轻松地在不同的数据源之间同步数据。

好的,下面是一个使用 DataX 将 Hive 数据同步到 MySQL 的实际案例。这个案例包括数据同步任务的配置文件和相关步骤。

案例:同步 Hive 数据到 MySQL

环境准备

  1. 安装 DataX:从 DataX GitHub 仓库 下载并安装 DataX。
  2. 配置 Hive 和 MySQL 连接:确保 Hive 和 MySQL 可以通过网络互相访问,并准备好所需的 JDBC 驱动。

配置文件

首先,创建一个 DataX 配置文件 hive_to_mysql.json,定义从 Hive 到 MySQL 的数据同步任务。

{"job": {"setting": {"speed": {"channel": 3  // 并发线程数}},"content": [{"reader": {"name": "hdfsreader","parameter": {"path": "hdfs://namenode:8020/user/hive/warehouse/your_table", // Hive 表所在的 HDFS 路径"defaultFS": "hdfs://namenode:8020","fileType": "orc",  // 文件类型"column": [{"index": 0, "type": "long"},{"index": 1, "type": "string"},{"index": 2, "type": "double"}// 依次配置所有列],"fieldDelimiter": "\u0001",  // 字段分隔符,Hive 默认使用 ^A"nullFormat": "\\N"}},"writer": {"name": "mysqlwriter","parameter": {"username": "your_mysql_username","password": "your_mysql_password","column": ["column1","column2","column3"// 依次配置所有列],"preSql": ["DELETE FROM your_mysql_table"  // 在数据写入前执行的 SQL 语句],"connection": [{"table": ["your_mysql_table"],"jdbcUrl": "jdbc:mysql://your_mysql_host:3306/your_database"}],"writeMode": "insert"  // 写入模式}}}]}
}

步骤详解

  1. 定义 Reader 配置

    • path:Hive 表在 HDFS 上的路径。
    • defaultFS:HDFS 的默认文件系统地址。
    • fileType:文件类型(如 ORC、Parquet)。
    • column:Hive 表的列定义,包括列索引和数据类型。
    • fieldDelimiter:字段分隔符,Hive 默认使用 ^A。
    • nullFormat:表示空值的格式。
  2. 定义 Writer 配置

    • usernamepassword:MySQL 数据库的用户名和密码。
    • column:对应 MySQL 表的列名。
    • preSql:在数据写入之前执行的 SQL 语句,如清空表数据。
    • connection:MySQL 数据库连接信息,包括目标表名和 JDBC URL。
    • writeMode:写入模式(如插入或更新)。

执行同步任务

  1. 启动 DataX
    在 DataX 的安装目录下,运行以下命令来执行数据同步任务:

    python ${DATAX_HOME}/bin/datax.py /path/to/hive_to_mysql.json
    

    其中,${DATAX_HOME} 是 DataX 的安装目录,/path/to/hive_to_mysql.json 是前面创建的配置文件的路径。

优化和调试

  1. 日志查看
    DataX 在执行过程中会生成详细的日志,便于查看同步任务的执行情况和调试错误。

  2. 并发优化
    根据数据量和服务器性能,调整 channel 数量以优化同步速度。

  3. 错误处理
    如果任务执行失败,根据日志信息检查配置文件,确保 Hive 和 MySQL 的连接信息正确无误。

通过上述步骤,我们可以使用 DataX 高效地将 Hive 数据同步到 MySQL。DataX 的灵活配置和高并发处理能力使其能够应对大规模数据同步任务,同时提供了详细的日志和监控功能,便于管理和调试。

dataX job 性能优化

对 DataX job 进行性能优化可以从以下几个方面入手:

  1. 并发配置优化

    • 合理配置读写并发数,根据数据源性能和网络带宽逐步调整并发数,以确定最佳并发数量。
    • 配置全局 Byte 限速和单 Channel Byte 限速,通过设置 job.setting.speed.bytecore.transport.channel.speed.byte 来控制 DataX job 内 Channel 并发。
  2. 批量提交大小优化

    • 调整批量提交大小 batchSize,减少 DataX 与数据库的网络交互次数,提升数据同步效率。
  3. 调整 JVM 堆内存

    • 为了防止 OOM 错误,增加 JVM 的堆内存,建议设置为 4G 或 8G。
  4. 数据库连接池使用

    • 使用数据库连接池提高数据读取和写入的效率。
  5. SQL 语句优化

    • 优化 SQL 语句,创建索引和分区表,减少查询时间。
  6. 合理使用 splitPk

    • 使用 splitPk 进行任务切分,提高任务并行度,尤其适用于大规模数据同步。
  7. 调整 Reader 和 Writer 参数

    • 根据 Reader 和 Writer 的类型调整参数,例如 fetchSize 对于 OracleReader 可以提升性能。
  8. 网络优化

    • 考虑网络带宽对 DataX 传输速度的影响,优化网络设置或使用内网地址提高数据传输效率。
  9. 日志级别调整

    • 调整日志级别,例如将 trace 改为 enable,减少日志输出,提高性能。
  10. 资源分配

    • 确保 DataX 作业运行在具有足够 CPU 和内存资源的机器上。
  11. 监控和分析

    • 使用 DataX 提供的监控工具分析作业执行情况,根据实际情况调整配置。

通过上述优化措施,可以有效提高 DataX job 的性能和数据同步效率。在实际操作中,可能需要根据具体的数据源和网络环境进行综合考虑和调整。

DataX 的优化参数主要在 DataX 作业的 JSON 配置文件中设置。以下是一些关键的优化参数及其在 JSON 配置文件中的位置:

  1. 并发数(Channel 个数)

    • "job" -> "setting" -> "speed" 下设置 "channel" 参数。
    {"job": {"setting": {"speed": {{ "channel": 5} }}}}
    
  2. 批量提交大小(Batch Size)

    • 在对应的 Writer 插件的 "parameter" 下设置 "batchSize" 参数。
    {"writer": {"parameter": {
    

{ “batchSize”: 2000}
}
}
}


3. **JVM 堆内存**:
- JVM 堆内存通常在启动 DataX 作业的命令行中设置,例如使用 `-Xms8G -Xmx8G` 参数。
```shell
python datax.py --jvm="-Xms8G -Xmx8G" your_datax_job.json
  1. 数据库连接池

    • 某些数据库插件可能支持连接池,具体参数根据插件文档设置,在 Reader 或 Writer 的 "parameter" 下配置。
  2. SQL 语句优化

    • 在 Reader 插件的 "parameter" 下的 "querySql""table" 属性中优化 SQL 语句。
  3. SplitPk

    • 在 Reader 插件的 "parameter" 下设置 "splitPk" 参数,用于数据分片。
     {"reader": {"parameter": {{ "splitPk": "id"}}}}
    
  4. Reader 和 Writer 特定参数

    • 根据使用的 Reader 或 Writer 类型,在 "parameter" 下设置特定参数,如 "fetchSize" 等。
  5. 日志级别

    • 日志级别通常在 DataX 配置文件 conf/core.json 中设置,例如 "logLevel": "debug"
  6. 资源分配

    • 资源分配主要取决于运行 DataX 作业的服务器配置,确保服务器有足够的 CPU 和内存资源。
  7. 监控和分析

    • 监控和分析通常通过 DataX 的日志输出和监控工具进行,不需要在 JSON 配置文件中设置。

请注意,不是所有参数都适用于所有类型的 Reader 和 Writer 插件。你需要根据具体使用的数据源和 DataX 插件的文档来确定可用的优化参数。此外,DataX 的配置文件和插件可能随版本更新而变化,因此建议参考最新的官方文档。

总结

DataX 是一款功能强大、灵活易用的数据同步工具,适用于各种数据同步场景。其高效稳定的性能、丰富的插件支持和灵活的配置方式,使其成为数据同步领域的一个优秀选择。通过 DataX,用户可以轻松实现多种异构数据源之间的数据迁移和同步,有效地支持数据分析和业务发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/857672.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鞋子分类数据集17399张69类别

数据集类型:图像分类用,不可用于目标检测无标注文件 数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片 图片数量(jpg文件个数):17399 分类类别数:69 类别名称:[“0”,“1”,“2”,“3”,“4”…

VisualBox 虚拟机 Ubunut 18.04 在大显示器上黑屏的问题

在小屏幕上显示没有问题,但是移动到大显示器上就黑屏了,并且不能铺满,如下所示 如果我希望它铺满整个屏幕,如何解决呢? 下面是解决方法: 虚拟机底部这个按钮,右键 产生菜单,按这个选…

09--keepalived高可用集群

前言:高可用集群配置是大型网站的一个基础,网站可用性的基础保障之一,这里将对应的概念知识和实操步骤进行整理与收集。 1、基础概念详解 1.1、高可用集群 高可用集群(High Availability Cluster,简称HA Cluster&am…

用友U9-UBF自定义报表-打印模板开发学习笔记

自定义报表、打印模板开发学习笔记 一、基础了解 1、UBF开发工具的了解 Ideconfig.xml配置 True:打印、报表设计模式 False:单据设计模式 2、开发环境试用 BE:实体项目 BF:操作项目 SV:服务项目 分析项目&am…

NGINX_六 nginx 日志文件详解

六 nginx 日志文件详解 nginx 日志文件分为 **log_format** 和 **access_log** 两部分log_format 定义记录的格式,其语法格式为log_format 样式名称 样式详情配置文件中默认有log_format main $remote_addr - $remote_user [time_local] "req…

jQuery 基本操作

01-简介 jQuery 是一个功能丰富且广泛使用的 JavaScript 库,它简化了 HTML 文档遍历和操作、事件处理、动画和 Ajax 操作。jQuery 通过其易用的 API,使复杂的 JavaScript 编程任务变得更加简单,并且兼容各种浏览器。 1、jQuery特点 简化 DOM …

【Mac】Pixelmator Pro for Mac(媲美PS的修图软件)软件介绍

软件介绍 Pixelmator Pro是一款功能强大的图像编辑软件,专为macOS平台设计。它结合了丰富的图像编辑功能和直观的用户界面,适合专业摄影师、设计师以及图像编辑爱好者。以下是Pixelmator Pro的一些主要特点和功能介绍: 功能特色 非破坏性编…

MSPM0G3507——创建新的.c.h文件

在项目处点击右键,再点击New File 再命名.c.h即可

JavaWeb——MySQL:DML对表数据的修改

2.DML对表数据的修改 2.1 修改表的数据 (1) 修改单行单列 SQL语句:update 表名 set 列名1数值1 where 列名2数值2; 将sql_student表姓名为吕小布的那行,性别设置为女; (2) 修改单行多列 SQL语句:update 表名 set 列…

Elasticsearch如何聚合查询多个统计值,如何嵌套聚合?并相互引用,统计索引中某一个字段的空值率?语法是怎么样的

文章目录 Elasticsearch聚合查询说明空值率查询DSL Elasticsearch聚合基础知识扩展Elasticsearch聚合概念Script 用法Elasticsearch聚合查询语法指标聚合(Metric Aggregations)桶聚合(Bucket Aggregations)矩阵聚合(Ma…

IDEA插件开发,国际化处理

1.resources目录新增国际化资源文件 我项目默认英文,增加了一个zh中文的,en-英语 cn-中文 2.参数定义,中文需转为Unicode编码,推荐Unicode编码转换 - 站长工具 (chinaz.com) 3.新增类CodeChronoBundle继承AbstractBundle package com.codech…

牛顿迭代法(求解整数的近似平方根)

情景再现 面试官:给你一个整数怎样最快求解他的近似平方根? 小白:可以用while循环呀! 面试官:有没有更好的方法? 小白:可以从这个数的左右两边开始迭代。 面试官:除了这个呢&#xf…

【从0实现React18】 (一) 项目初始化

Multi-repo 和 Mono-repo 由于需要同时管理多个包,如React、React-dom等,所以选择**Mono-repo** 选择使用pnpm-workspace搭建Mono-repo环境的原因 依赖安装快更规范 Pnpm初始化 npm install -g pnpm pnpm init配置pnpm-workspace.yml文件 pnpm-work…

ai assistant激活成功后,如何使用

ai assistant激活成功后,如图 ai assistant渠道:https://web.52shizhan.cn/activity/ai-assistant 在去年五月份的 Google I/O 2023 上,Google 为 Android Studio 推出了 Studio Bot 功能,使用了谷歌编码基础模型 Codey,Codey 是…

内容安全复习 4 - 深度生成模型

文章目录 概述经典算法自回归模型(Autoregressive model)变分自编码器(VAE)生成对抗网络(GAN)扩散模型(Diffusion model)总结 应用 概述 深度生成模型是一类使用深度学习技术构建的…

红队内网攻防渗透:内网渗透之内网对抗:横向移动篇入口差异切换上线IPC管道ATSC任务Impacket套件UI插件

红队内网攻防渗透 1. 内网横向移动1.1 横向移动入口知识点1.1.1、当前被控机处于域内还是域外1.1.1.1 在域内1.1.1.2 不在域内1.1.1.2.1 第一种方法提权到system权限1.1.1.2.2 第二种方法切换用户上线1.1.1.2.3 kerbrute枚举用户1.1.2、当前凭据为明文密码还是HASH1.2 横向移动…

跟TED演讲学英文:How language shapes the way we think by Lera Boroditsky

How language shapes the way we think Link: https://www.ted.com/talks/lera_boroditsky_how_language_shapes_the_way_we_think? Speaker: Lera Boroditsky Date: November 2017 文章目录 How language shapes the way we thinkIntroductionVocabularySummaryTranscriptA…

【单片机毕业设计选题24020】-全自动鱼缸的设计与应用

系统功能: (1)检测并控制鱼缸水温,水温低于22℃后开启加热,高于28℃后关闭加热。 (2)定时喂食,每天12点和0点喂食一次,步进电机开启后再关闭模拟喂食。 (3&#xff09…

qt 简单实验 一个可以向左侧拖拽缩放的矩形

1.概要 向左拖拽矩形&#xff0c;和向右拖拽不同&#xff0c;向右拖拽是增加宽度&#xff0c;向左拖拽是增加宽度的同时还要向左移动x的坐标。 2.代码 2.1 resizablerectangleleft.h #ifndef RESIZABLERECTANGLELEFT_H #define RESIZABLERECTANGLELEFT_H #include <QWid…

【Matlab】-- BP反向传播算法

文章目录 文章目录 00 写在前面01 BP算法介绍02 基于Matlab的BP算法03 代码解释 00 写在前面 BP算法可以结合鲸鱼算法、飞蛾扑火算法、粒子群算法、灰狼算法、蝙蝠算法等等各种优化算法一起&#xff0c;进行回归预测或者分类预测。 01 BP算法介绍 BP&#xff08;Backpropag…