论文解读——《I2EDL: Interactive Instruction Error Detection and Localization》

一、研究背景

  视觉与语言导航(VLN)是一个AI领域的研究任务,旨在开发能够按照自然语言指令在三维空间中导航到指定位置的智能体。这项任务与人类的日常活动——如按照口头指示到达某个地点——十分相似,对于推动人机交互的自然性和实用性具有重要意义。大多数现有的研究假设用户提供的语言指令总是正确无误的。然而,现实生活中,人们在给出方向时往往会犯错,如将“左转”误说成“右转”。此外,指令的复杂性和人们在空间认知能力上的差异也可能导致错误的发生。错误的指令会直接影响导航任务的成功率。智能体如果严格遵循错误的指令,很可能无法到达目标位置,或者在错误的路径上浪费大量时间和资源。

  为了解决这些问题,研究者提出了交互式视觉与语言导航(IVLN-CE)。与传统的VLN任务不同,IVLN-CE允许智能体在执行任务过程中与用户进行交互,以验证和纠正可能的指令错误。这种模式不仅可以提高导航的准确性,还可以通过实时纠错减少用户的等待时间和潜在的挫败感。

  论文还讨论了人类如何利用认知映射来处理和记忆环境信息,这对于理解指令错误的根源和设计更好的交互式导航系统具有启示作用。人们的空间认知能力差异意味着智能体需要能够处理各种不精确或错误的空间信息。

二、当前难点

  1. 错误检测和定位

  错误检测和定位是视觉与语言导航中的一个核心问题,尤其是在交互式环境中。在现有的研究中,智能体往往在导航完成后才能识别出指令中的错误,这种模式称为离线模式。这意味着智能体在执行任务过程中,一旦走错了路线,就无法及时获得反馈并修正错误,从而可能导致任务失败。此外,由于这种错误检测和定位发生在事后,用户和智能体之间缺乏有效的实时交互,这限制了系统在实际应用中的灵活性和有效性。

  1. 实时交互的复杂性

  实时交互是提高智能体导航效率和正确率的关键因素,但这也带来了显著的挑战。首先,智能体需要在没有完整场景观察的情况下,即时识别和定位指令中的潜在错误。这要求智能体具备高度的语境理解能力和即时反应能力。其次,频繁的交互可能会对用户造成干扰,增加其认知负担。例如,如果智能体需要用户频繁确认指令的准确性,这可能会打断用户的其他活动,影响用户体验。因此,如何设计一个既能有效检测和定位错误,又能在保持用户交互简洁性和低干扰性的系统,是当前研究的一个主要难点。

三、技术方案

在这里插入图片描述

  I2EDL(Interactive Instruction Error Detector and Localizer)是一个用于交互式视觉和语言导航(IVLN-CE)的模型,它能够在线检测和定位自然语言指令中的错误。智能体在执行任务过程中,通过与用户的交互来验证指令的正确性,并及时纠正错误。这种方法能够在不增加用户认知负担的前提下,提高导航的准确性和效率。

  • 错误检测和定位的技术实现

  预训练模块:I2EDL利用预训练的深度学习模型来分析指令文本和智能体的视觉观察数据。这种模型结合了自然语言处理和计算机视觉技术,能够理解复杂的指令和识别与指令相关的视觉对象。

  实时交互机制:当模型检测到指令中可能存在的错误时,智能体会主动向用户提问,确认指令中特定词汇或短语是否正确。如果用户确认存在错误,智能体会请求用户提供正确的指令部分,然后更新其导航策略。

  错误定位:I2EDL模型不仅能检测出错误,还能精确地定位到错误所在的具体位置。这通过分析语言指令与视觉观察之间的不一致性来实现,从而确保智能体提出的问题尽可能具体和相关,减少用户解答的难度。

四、实验结果

在这里插入图片描述

Taioli F, Rosa S, Castellini A, et al. I2EDL: Interactive Instruction Error Detection and Localization[J]. arxiv preprint arxiv:2406.05080, 2024.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/852128.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【智能算法应用】基于混合粒子群-蚁群算法的多机器人多点送餐路径规划问题

目录 1.算法原理2.数学模型3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】粒子群算法(PSO)原理及实现 配餐顺序: 采用混合粒子群算法 || 路径规划: 采用蚁群算法 2.数学模型 餐厅送餐多机器人多点配送路径规划&…

linux系统——wget命令

wget命令可以用于下载指定的url地址文件,支持断点续传,支持ftp,http协议下载,在下载普通文件时,即使网络出现故障,依然会不断尝试下载 wget命令直接加url地址 使用-o参数可以将下载文件改名,-c…

AXI Quad SPI IP核中的STARTUPEn原语参数

启动STARTUPEn Primitive (原语)参数在 FPGA的主 SPI模式下非常有用。当你启用这个参数时,对于 7 系列设备,STARTUPE2 原语会被包含在设计中;而对于 UltraScale™ 设备,则是 STARTUPE3 原语。这些原语在 FP…

CentOS手工升级curl记

笔者一台服务器装有 CentOS 7.9 系统,运行 curl -V 查询 curl 的版本是 7.29,这个老版本的 curl 不支持 HTTP/2 协议。为了使 curl 能连接HTTP/2,curl 必须升级到至少7.46.0版本以上。查询 curl的官网得知当前最新版本是 8.8.0,然…

【智能算法应用】基于粒子群算法的多尺度Retinex图像去雾方法

目录 1.算法原理2.粒子群算法的多尺度Retinex图像去雾方法3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】粒子群算法(PSO)原理及实现 多尺度Retinex算法 在Retinex算法中,雾化图像的形成可以总结为入射光和反射光的乘积: I ( x…

第 3 章:Spring Framework 中的 AOP

第 3 章:Spring Framework 中的 AOP 讲完了 IoC,我们再来聊聊 Spring Framework 中的另一个重要内容——面向切面编程,即 AOP。它是框架中众多功能的基础,例如声明式事务就是依靠 AOP 来实现的。此外,Spring 还为我们…

创邻科技张晨:期待解锁图技术在供应链中的关联力

近日,创邻科技创始人兼CEO张晨博士受浙江省首席信息官协会邀请,参加数字化转型与企业出海研讨会。 此次研讨会旨在深入探讨数字经济时代下,企业如何有效应对成本提升与环境变化所带来的挑战,通过数字化转型实现提效增益&#xff…

4090显卡 安装cuda 11.3 版本

文章目录 cuda 安装安装过程中会要求选择安装的内容更改cuda地址到你安装的地方 cuda 安装 cuda官网寻找cuda11.3 版本 https://developer.nvidia.com/cuda-11.3.0-download-archive?target_osLinux&target_archx86_64&DistributionUbuntu&target_version20.04&…

yolo-inference多后端+多任务+多算法+多精度模型 框架开发记录(python版)

先贴出github地址,欢迎大家批评指正:https://github.com/taifyang/yolo-inference 不知不觉LZ已经快工作两年了,由于之前的工作内容主要和模型部署相关,想着利用闲暇时间写一些推理方面的经验总结,于是有了这个工程。其…

边缘计算网关在智慧厕所远程监测与管理的应用

随着智慧城市建设的不断深入,城市公共设施的智慧化管理成为了提升城市品质和居民生活质量的关键建设。公厕作为城市基础设施的重要组成部分,其管理效率和卫生状况直接影响着市民的日常生活体验。在公厕设施建设背景下,边缘计算网关技术的应用…

【JS重点09】JS闭包(面试重点)

本文核心目标:阅读完本文能说出什么是闭包,闭包作用以及如何利用闭包 一:闭包概览 1 闭包是什么 闭包(closure)是一个函数以及其捆绑的周边环境状态(lexical environment,词法环境&#xff09…

如何将接口返回/n替换为react.js中的换行符

将每个/n替换为ReactJS中的一个<br>标记。cpa_ability为后端返回的字段名

时间类:Calendar

一.Calendar概述 1.Calendar代表了系统当前时间的日历对象,可以单独修改,获取时间中的年&#xff0c;月&#xff0c;日 2.细节:Calendar是一个抽象类,不能直接创建对象。 二.获取Calendar日历类对象的方法 // 会根据系统的不同时区来获取不同的日历对象 // 会根据系统的不同…

6.每日LeetCode-数组类,找到所有数组中消失的数字(Go)

题目 448找到所有数组中消失的数字.go 给你一个含 n 个整数的数组 nums &#xff0c;其中 nums[i] 在区间 [1, n] 内。请你找出所有在 [1, n] 范围内但没有出现在 nums 中的数字&#xff0c;并以数组的形式返回结果。 示例 1&#xff1a; 输入&#xff1a;nums [4,3,2,7,8,2,…

双喜临门 | 两大权威报告发布,开源网安实力登榜

近日&#xff0c;开源网安凭借出色表现和实力&#xff0c;荣获两大荣誉&#xff1a;入选《中国信息安全》杂志社联合数说安全发布的《2024 年中国金融行业网络安全市场全景图》&#xff0c;并登榜安在发布的《2024安在新榜网络安全产品“大众点评”百强榜》。 2024年中国金融行…

Java开发规范

1.接口命名规范–Restful API 原本格式是动词资源by传参&#xff0c;后来进化为Restful API&#xff0c;思想是以资源为中心。 动词用get,post,put,delete请求方法代替&#xff0c;by后面的名词用传参代替。 并且GET方法传参资源ID采用路径传参&#xff0c;除了资源ID外的GET…

【智能算法应用】基于A星算法求解六边形栅格地图路径规划

目录 1.算法原理2.结果展示3.参考文献4.代码获取 1.算法原理 精准导航&#xff1a;用A*算法优化栅格地图的路径规划【附Matlab代码】 六边形栅格地图 分析一下地图&#xff1a; 六边形栅格地图上移动可以看做6领域运动&#xff0c;偶数列与奇数列移动方式有所差异&#xff0…

使用 Elasticsearch 调用 OpenAI 函数

作者&#xff1a;来自 Elastic Ashish Tiwari 介绍 OpenAI 中的函数调用是指 AI 模型与外部函数或 API 交互的能力&#xff0c;使它们能够执行文本生成之外的任务。此功能使模型能够通过调用预定义函数来执行代码、从数据库检索信息、与外部服务交互等。 该模型根据用户提示智…

连接·共享·成长:15大顶尖峰会热议AI,逾万商家聚焦实在Agent

在数字化浪潮的推动下&#xff0c;人工智能&#xff08;AI&#xff09;和机器人流程自动化&#xff08;RPA&#xff09;正成为行业创新和效率提升的强大引擎。作为自动化领域的领航者&#xff0c;实在智能不仅在AI技术革新上保持领先地位&#xff0c;更通过一系列行业活动&…

[13] CUDA_Opencv联合编译过程

CUDA_Opencv联合编译过程 详细编译过程可见我之前的文章&#xff1a;Win10下OpencvCUDA联合编译详细教程&#xff08;版本455、460、470,亲测可用&#xff01;&#xff01;&#xff01;&#xff09;本文给出Windows\linux下的opencvcuda的编译总结&#xff0c;摘自 <基于GP…