如何利用向量数据库来弥补 LLM 的弱点

向量数据库使企业能够以经济且可持续的方式调整通用大型语言模型以供组织特定使用。

译自 How to Cure LLM Weaknesses with Vector Databases,作者 Naren Narendran。

多年来,人们一直在猜测人工智能对企业产生的潜在影响。现在,我们看到来自不同行业的公司开始利用大型语言模型 (LLM)和生成式人工智能 (GenAI)。麦肯锡认为,全球经济可能从 GenAI 的采用中受益高达4.4 万亿美元,这使得使用人工智能和 LLM 比以往任何时候都更具吸引力。

现成的 LLM 具有吸引力,因为它们是一种相对容易的方法,可以将通用人工智能融入组织结构中。然而,LLM 有一个重大的缺陷,可能会抵消潜在的好处:缺乏特定领域的背景。在简单的用例中,这可能不是问题。然而,在生产和其他更复杂的上下文中,通用 LLM 可能会产生一系列挑战。

随着企业越来越多地转向实时人工智能应用程序和工具,他们需要超越这些限制。你可能会问,如何以经济实惠且可持续的方式来增强以人工智能为主导的环境。答案是向量数据库,我将在本文中对其进行剖析,这是两部分系列文章的第一部分。

LLM 对企业的局限性

在深入了解向量数据库的世界之前,我将着眼于现成 LLM 的三个重大局限性。

过时的训练数据

LLM 摄取的训练数据最终决定了它的能力。这是一个重大的限制,因为数据很少是常青的。相反,数据通常是特定时间点的快照,这意味着它最终可能变得不相关或不正确。

陈旧过时的数据具有重大影响,因为人工智能应用程序的准确性完全取决于训练数据的质量和新鲜度。

缺乏组织特定的背景

现成 LLM 的训练数据来自不同的公共和私人来源。这些数据赋予了 LLM 所有功能。对于企业来说,令人担忧的是,通用 LLM 缺乏组织特定的背景。这是因为没有现成的 LLM 利用特定于特定企业的专有数据,这意味着各种独特的背景将不被承认。

人工智能幻觉

信心既是 LLM 的优势,也是劣势。它们具有以绝对确定性回答问题的不可思议的能力,即使它们的答案完全错误。这种现象被称为人工智能幻觉,可能导致不准确、荒谬或潜在危险的输出。

对于信誉和运营效率取决于强大且高质量的 LLM 的企业来说,人工智能幻觉构成了重大威胁。而且,由于现成的 LLM 始终有使用过时或与领域无关的数据的风险,因此人工智能幻觉的威胁迫在眉睫。

了解向量数据库:向量嵌入

为了了解向量数据库如何改进 LLM 和其他实时人工智能应用程序,我将首先描述它们包含的内容。

向量数据库是向量嵌入的索引存储库。向量嵌入是文本、视频、照片和音频等各种形式数据的数学或数字表示。通过将不同的可读数据转换为数字序列,向量嵌入提供了语义(而不是肤浅的)价值。从本质上讲,向量嵌入根据关系对数据进行分类,上下文和深层含义。

在 LLM 上下文中,将不同数据格式中的复杂语义转换为标准化数字表示至关重要。通过使用数学语言和逻辑,向量嵌入提供了更高程度的搜索和检索准确性跨以前异构的数据。这有助于优化搜索、聚类、分类和异常检测。对于企业来说,这是潜在的变革,因为任何机器学习 (ML) 算法都可以受益于向量嵌入。

向量数据库如何提升现成的 LLM

在现成的 LLM 中,训练期间使用的向量嵌入通常保持未发布和未知状态,因此很难评估其理解和能力的局限性。但是,大多数 LLM 都具有嵌入功能,这意味着企业可以向其中注入特定于领域的的数据,以解决特定于组织的知识差距。通过将包含专有信息和其他特定于领域的信息的向量嵌入的补充 LLM 向量数据库集成到其 LLM 中,公司可以根据其独特需求增强现成的 AI 解决方案。

使用向量数据库丰富和优化 LLM 还可以消除上面列出的现成产品的风险。

例如,如果可以定期添加更多更新且相关的数据,那么企业不必担心其 LLM 利用陈旧的数据。此外,通过添加包含专有数据的向量数据库,组织可以显著降低 AI 幻觉的可能性。

AI 采用的好处不会轻易获得。但是,通过理解和利用 LLM 向量数据库,企业可以释放强大的实时 AI 应用程序的全部潜力。

LLM 和向量数据库:前进的道路

生成式 AI 和 LLM 在各个领域激增。许多组织正在利用这些技术来加强其后端基础设施、增强服务和产品,并成为其领域的领导者。虽然现成的 LLM 是运行实时 AI 应用程序的一个良好起点,但它们充满了挑战和限制。其中关键的是过时的训练数据、缺乏特定于组织的上下文和 AI 幻觉。

向量数据库和嵌入 是应对这些 LLM 挑战的强大解毒剂,并且可以极大地提高搜索准确性。

在本系列的第 2 部分中,我将探讨检索增强生成 (RAG) 架构框架如何帮助公司将专有向量数据库添加到其 LLM 和 AI 生态系统中,以解决现成 LLM 的局限性。*了解 * Aerospike 的企业级向量搜索解决方案 如何大规模提供一致的准确性。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/845097.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

远程工作/线上兼职网站整理(数字游民友好)

文章目录 国外线上兼职网站fiverrupwork 国内线上兼职网站甜薪工场猪八戒网云队友 国外线上兼职网站 fiverr https://www.fiverr.com/start_selling?sourcetop_nav upwork https://www.upwork.com/ 国内线上兼职网站 甜薪工场 https://www.txgc.com/ 猪八戒网 云队友 …

HarmonyOS 鸿蒙DevEco:导入无法运行提示Sync failed

场景:导入官网下载的案例后导入发现无法运行模拟机,Notifications提示Sync failed... 解决:查看Cause发现是版本问题,通过修改相关内容来解决该问题 1、打开案例地址找到hvigor文件夹 2、打开hvigor-config.json5,将&…

零基础入门学习Python第二阶04SQL详解01

SQL 和 MySQL 详解 SQL 详解 我们通常可以将 SQL 分为四类,分别是 DDL(数据定义语言)、DML(数据操作语言)、DQL(数据查询语言)和 DCL(数据控制语言)。DDL 主要用于创建…

无需开孔,安全美观:低功耗微波雷达模块开启宠物喂食器新未来

在快节奏的现代生活中,宠物已成为许多家庭的重要成员。然而,忙碌的主人常常为如何确保宠物按时进食而困扰。近年来,智能家居技术飞速发展,宠物喂食器也逐渐智能化,极大地方便了宠物主人。今天,我们要介绍的…

【qt】自定义对话框

自定义对话框 一.自定义对话框的使用1.应用场景2.项目效果3.界面拖放4.模型和视图的设置5.action功能实现 二.自定义对话框的创建1.设置对话框界面2.创建对话框 三.对话框的功能与样式实现1.对话框数据的交换2.对话框的显示3.设置对话框的特性4.完成按钮的功能 四.编辑表头的对…

数组中的第K个最大元素,力扣

目录 题目地址: 我们直接看题解吧: 快速理解解题思路小建议: 审题目事例提示: 解题方法: 解题分析: 解题思路: 题目地址: 215. 数组中的第K个最大元素 - 力扣(LeetCode&a…

ChatGPT的逆袭历程:核心技术深度解析

在ChatGPT问世之前,已有许多大模型存在,但为何只有它成为了AI时代的“iPhone时刻”?这不仅得益于其技术优势,还在于其发展过程中所采用的一系列创新策略。本文将深度复盘ChatGPT的逆袭历程,分析其核心技术,…

MySQL数据库--从创建数据库到删库跑路

目录 MySQL安装: 1. 数据库基本操作1.1 创建数据库1.2 显示当前数据库1.3 删除数据库1.4 使用数据库/选中数据库 2. SQL中的数据类型2.1 数值类型2.2 字符串类型2.3 时间类型 3. 表的操作3.2 创建表3.1 显示数据库中的表3.3 查看表的详细情况3.4 删除表3.5 注释3. 修改列(了解即…

数据结构 | 二叉树(基本概念、性质、遍历、C代码实现)

1.树的基本概念 树是一种 非线性 的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合。 把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 有一个特殊的结点,称为根…

五分钟“手撕”链表

为了提高大家的学习效率,我把代码放开头,供查阅。 目录 一、链表的实现代码 二、什么是链表 三、链表的分类 四、链表的常见操作 插入 删除 五、Java自带的LinkedList 两个构造方法 一些常用方法 六、LinkedList的遍历 七、ArrayList和Linke…

华媒舍:10种欧洲地区媒体发稿推广技巧

1.了解欧洲地区媒体自然环境必须掌握欧洲地区媒体的发稿推广方法,首先要对欧洲地区媒体自然环境有一定的了解。包含不一样国家的主力媒体,他的阅读者人群、销售市场遮盖及其报导风格等。仅有熟悉媒体自然环境,才能更好的制订营销推广策略。 …

Web----网络通讯部分

一、TCP和UDP的区别 TCP是一种面向连接的协议,它在传输数据之前会建立一条专用的通信连接。这意味着在数据传输过程中,两台计算机之间会有一条稳定的数据传输通道。因此,TCP可以保证数据传输的可靠性,但会带来一定的延迟。 UDP是…

Android VSYNC双Buffer与三Buffer渲染线程RenderThread(5)

Android VSYNC双Buffer与三Buffer渲染线程RenderThread(5) 手机自带的卡顿丢帧分析工具,柱状图: 帧的大体绘制过程: 帧绘制中的重要概念:BufferQueue 首先看一下 BufferQueue,BufferQueue 是一个…

Visual Studio Code 开发esp8266流程2Arduino 配置 nodemcu

http://arduino.esp8266.com/stable/package_esp8266com_index.json Arduino: Library Manager

第二十五章CSS中的技巧(导航栏、下拉列表)

1.CSS精灵 1.什么是CSS精灵 英文叫法 CSS sprites,通常被解释为“CSS图像拼合”或“CSS贴图定位”;其实就是把网页中一些背景图片整合到一张图片文件中,再利用css“background-image”, “background-repeat”,“background-position”的组…

中国地质大学(武汉):23考研多专业接受调剂,24新增上机考试!中国地质大学(武汉)计算机考研考情分析!

中国地质大学(武汉)计算机学院成立于1985年,其前身为地矿部武汉计算站。经过近二十年的努力,计算机学院不断发展壮大。现设有计算机应用、计算机软件、网络与系统结构、信息安全四个教研室;拥有湖北省计算机应用技术重…

最大回撤概念与计算

一、最大回撤,是指的最大下跌的值: 1、即所有下跌趋势中,净值最低的点,与历史净值最高点直接的差值。 2、最大回撤取绝对值显示 二、如果有时间限制,则计算对应时间段内的最大回撤。 示意图如下: 三、举…

【Java面试】七、SpringMvc的执行流程、SpringBoot自动装配原理

文章目录 1、SpringMVC的执行流程1.1 视图阶段1.2 前后端分离阶段 2、SpringBoot自动配置原理3、框架常用的注解3.1 Spring的注解3.2 SpringMvc的注解3.3 SpringBoot的注解 4、面试 1、SpringMVC的执行流程 1.1 视图阶段 旧项目中,未前后端分离时,用到…

OAK相机如何将 YOLOv10 模型转换成 blob 格式?

编辑:OAK中国 首发:oakchina.cn 喜欢的话,请多多👍⭐️✍ 内容可能会不定期更新,官网内容都是最新的,请查看首发地址链接。 Hello,大家好,这里是OAK中国,我是Ashely。 专…

Microsoft Fabric 是什么?

最近半个月没有更新内容,原因是什么呢? 原因是花了两周的时间备考了一下"Microsoft Certified: Fabric Analytics Engineer Associate"的考试认证。 非常幸运考试通过了。 那什么是Microsoft Fabric 呢? Microsoft Fabric 是一个…