OAK相机如何将 YOLOv10 模型转换成 blob 格式?

编辑:OAK中国
首发:oakchina.cn
喜欢的话,请多多👍⭐️✍
内容可能会不定期更新,官网内容都是最新的,请查看首发地址链接。

Hello,大家好,这里是OAK中国,我是Ashely。

专注科技,专注分享。

这可能是我给大家发的最后一篇博客了,马上就要离开这里,追逐我的梦想了!Anyway,来看教程正文吧!

1.其他Yolo转换及使用教程请参考
2.检测类的yolo模型建议使用在线转换(地址),如果在线转换不成功,你再根据本教程来做本地转换。

▌.pt 转换为 .onnx

使用下列脚本(将脚本放到 YOLOv10 根目录中)将 pytorch 模型转换为 onnx 模型

若安装了blobconverter可直接转换成 blob

示例用法(默认使用 one2one ):

python export_onnx.py -w <path_to_model>.pt -imgsz 640 

export_onnx.py :

usage: export_onnx.py [-h] -m INPUT_MODEL [-imgsz IMG_SIZE [IMG_SIZE ...]] [-op OPSET] [--max_det MAX_DET] [-n NAME] [-o OUTPUT_DIR] [-b] [-s] [-sh SHAVES] [-t {docker,blobconverter,local}]Tool for converting Yolov8 models to the blob format used by OAKoptional arguments:-h, --help            show this help message and exit-m INPUT_MODEL, -i INPUT_MODEL, -w INPUT_MODEL, --input_model INPUT_MODELweights path (default: None)-imgsz IMG_SIZE [IMG_SIZE ...], --img-size IMG_SIZE [IMG_SIZE ...]image size (default: [640, 640])-op OPSET, --opset OPSETopset version (default: 12)--max_det MAX_DET     maximum number of detections per image (default: 300)--one2many            Use the 'one2many' branch as the 'head' output, otherwise 'one2one' (default: False)-n NAME, --name NAME  The name of the model to be saved, none means using the same name as the input model (default: None)-o OUTPUT_DIR, --output_dir OUTPUT_DIRDirectory for saving files, none means using the same path as the input model (default: None)-b, --blob            OAK Blob export (default: False)-s, --spatial_detectionInference with depth information (default: False)-sh SHAVES, --shaves SHAVESInference with depth information (default: None)-t {docker,blobconverter,local}, --convert_tool {docker,blobconverter,local}Which tool is used to convert, docker: should already have docker (https://docs.docker.com/get-docker/) and docker-py (pip install docker) installed; blobconverter: uses an onlineserver to convert the model and should already have blobconverter (pip install blobconverter); local: use openvino-dev (pip install openvino-dev) and openvino 2022.1 (https://docs.oakchina.cn/en/latest /pages/Advanced/Neural_networks/local_convert_openvino.html#id2) to convert (default: blobconverter)
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import argparse
import json
import logging
import math
import sys
import time
import warnings
from io import BytesIO
from pathlib import Path
from zipfile import ZipFile, ZIP_LZMAimport torch
from torch import nnwarnings.filterwarnings("ignore")FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))  # add ROOT to PATHfrom ultralytics.nn.modules import v10Detect, Detect
from ultralytics.nn.tasks import attempt_load_weights
from ultralytics.utils.tal import dist2bbox, make_anchors
from ultralytics.utils import ops
from ultralytics.utils.torch_utils import select_devicetry:from rich import printfrom rich.logging import RichHandlerlogging.basicConfig(level="INFO",format="%(message)s",datefmt="[%X]",handlers=[RichHandler(rich_tracebacks=False,show_path=False,)],)
except ImportError:logging.basicConfig(level="INFO",format="%(asctime)s\t%(levelname)s\t%(message)s",datefmt="[%X]",)def v10postprocess(preds, max_det, nc=80):"""对模型预测结果进行后处理。Args:preds (torch.Tensor): 模型的预测结果,形状为 (batch_size, num_boxes, 4 + num_classes)max_det (int): 需要保留的最大检测框数量。nc (int): 类别数。Returns:boxes (torch.Tensor): 保留的检测框的坐标,形状为 (batch_size, max_det, 4)scores (torch.Tensor): 保留的检测框的置信度,形状为 (batch_size, max_det)labels (torch.Tensor): 保留的检测框的类别标签,形状为 (batch_size, max_det)。Notes:这个函数假设输入的 `preds` 张量的最后一个维度表示每个检测框的坐标和置信度。"""assert 4 + nc == preds.shape[-1]# 分割预测结果为边界框坐标和置信度boxes, scores = preds.split([4, nc], dim=-1)# 选取每个预测结果中置信度最高的几个预测框max_scores = scores.amax(dim=-1)max_scores, index = torch.topk(max_scores, max_det, dim=-1)index = index.unsqueeze(-1)# 根据置信度最高的预测框的索引,获取对应的边界框和置信度boxes = torch.gather(boxes, dim=1, index=torch.cat([index for i in range(boxes.shape[-1])], dim=-1))scores = torch.gather(scores, dim=1, index=torch.cat([index for i in range(scores.shape[-1])], dim=-1))# 在所有预测结果中选取置信度最高的几个预测框scores, index = torch.topk(scores.flatten(1), max_det, dim=-1)# 计算类别标签labels = index - (index // nc) * ncindex = (index // nc).unsqueeze(-1)# 根据索引获取保留的边界框boxes = boxes.gather(dim=1, index=torch.cat([index for i in range(boxes.shape[-1])], dim=-1))return boxes, scores, labelsclass DetectV10(nn.Module):"""YOLOv10 Detect head for detection models"""dynamic = False  # force grid reconstructionexport = False  # export modeshape = Noneanchors = torch.empty(0)  # initstrides = torch.empty(0)  # initmax_det = -1def __init__(self, old_detect):super().__init__()self.nc = old_detect.nc  # number of classesself.nl = old_detect.nl  # number of detection layersself.reg_max = old_detect.reg_max  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = old_detect.no  # number of outputs per anchorself.stride = old_detect.stride  # strides computed during buildself.cv2 = old_detect.cv2self.cv3 = old_detect.cv3self.dfl = old_detect.dflself.f = old_detect.fself.i = old_detect.iself.one2one_cv2 = old_detect.one2one_cv2self.one2one_cv3 = old_detect.one2one_cv3def decode_bboxes(self, bboxes, anchors):"""Decode bounding boxes."""return dist2bbox(bboxes, anchors, xywh=False, dim=1)def inference(self, x):# Inference pathshape = x[0].shape  # BCHWx_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)if self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapebox, cls = x_cat.split((self.reg_max * 4, self.nc), 1)# dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=False, dim=1) * self.stridesdbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.stridesy = torch.cat((dbox, cls.sigmoid()), 1)return ydef forward_feat(self, x, cv2, cv3):y = []for i in range(self.nl):y.append(torch.cat((cv2[i](x[i]), cv3[i](x[i])), 1))return ydef forward(self, x):one2one = self.forward_feat([xi.detach() for xi in x], self.one2one_cv2, self.one2one_cv3)one2one = self.inference(one2one)assert self.max_det != -1boxes, scores, labels = v10postprocess(one2one.permute(0, 2, 1), self.max_det, self.nc)boxes /= torch.Tensor([x[0].shape[2] * 2**3, x[0].shape[3] * 2**3, x[0].shape[2] * 2**3, x[0].shape[3] * 2**3])return torch.cat([labels.unsqueeze(-1), labels.unsqueeze(-1), scores.unsqueeze(-1), boxes], dim=-1)# return torch.cat([boxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1)def bias_init(self):# Initialize Detect() biases, WARNING: requires stride availabilitym = self  # self.model[-1]  # Detect() modulefor a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)class DetectV8(nn.Module):"""YOLOv8 Detect head for detection models"""dynamic = False  # force grid reconstructionexport = False  # export modeshape = Noneanchors = torch.empty(0)  # initstrides = torch.empty(0)  # initdef __init__(self, old_detect):super().__init__()self.nc = old_detect.nc  # number of classesself.nl = old_detect.nl  # number of detection layersself.reg_max = (old_detect.reg_max)  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = old_detect.no  # number of outputs per anchorself.stride = old_detect.stride  # strides computed during buildself.cv2 = old_detect.cv2self.cv3 = old_detect.cv3self.dfl = old_detect.dflself.f = old_detect.fself.i = old_detect.idef forward(self, x):shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)box = self.dfl(box)cls_output = cls.sigmoid()# Get the maxconf, _ = cls_output.max(1, keepdim=True)# Concaty = torch.cat([box, conf, cls_output], dim=1)# Split to 3 channelsoutputs = []start, end = 0, 0for i, xi in enumerate(x):end += xi.shape[-2] * xi.shape[-1]outputs.append(y[:, :, start:end].view(xi.shape[0], -1, xi.shape[-2], xi.shape[-1]))start += xi.shape[-2] * xi.shape[-1]return outputsdef bias_init(self):# Initialize Detect() biases, WARNING: requires stride availabilitym = self  # self.model[-1]  # Detect() modulefor a, b, s in zip(m.cv2, m.cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)def parse_args():parser = argparse.ArgumentParser(description="Tool for converting Yolov8 models to the blob format used by OAK",formatter_class=argparse.ArgumentDefaultsHelpFormatter,)parser.add_argument("-m","-i","-w","--input_model",type=Path,required=True,help="weights path",)parser.add_argument("-imgsz","--img-size",nargs="+",type=int,default=[640, 640],help="image size",)  # height, widthparser.add_argument("-op", "--opset", type=int, default=12, help="opset version")parser.add_argument("--max_det", default=300, help="maximum number of detections per image")parser.add_argument("--one2many",action="store_true",help="Use the 'one2many' branch as the 'head' output, otherwise 'one2one'",)parser.add_argument("-n","--name",type=str,help="The name of the model to be saved, none means using the same name as the input model",)parser.add_argument("-o","--output_dir",type=Path,help="Directory for saving files, none means using the same path as the input model",)parser.add_argument("-b","--blob",action="store_true",help="OAK Blob export",)parser.add_argument("-s","--spatial_detection",action="store_true",help="Inference with depth information",)parser.add_argument("-sh","--shaves",type=int,help="Inference with depth information",)parser.add_argument("-t","--convert_tool",type=str,help="Which tool is used to convert, docker: should already have docker (https://docs.docker.com/get-docker/) and docker-py (pip install docker) installed; blobconverter: uses an online server to convert the model and should already have blobconverter (pip install blobconverter); local: use openvino-dev (pip install openvino-dev) and openvino 2022.1 ( https://docs.oakchina.cn/en/latest /pages/Advanced/Neural_networks/local_convert_openvino.html#id2) to convert",default="blobconverter",choices=["docker", "blobconverter", "local"],)args = parser.parse_args()args.input_model = args.input_model.resolve().absolute()if args.name is None:args.name = args.input_model.stemif args.output_dir is None:args.output_dir = args.input_model.parentargs.img_size *= 2 if len(args.img_size) == 1 else 1  # expandif args.shaves is None:args.shaves = 5 if args.spatial_detection else 6return argsdef export(input_model, img_size, output_model, opset, **kwargs):t = time.time()# Load PyTorch modeldevice = select_device("cpu")# load FP32 modelmodel = attempt_load_weights(input_model, device=device, inplace=True, fuse=True)labels = model.module.names if hasattr(model, "module") else model.names  # get class nameslabels = labels if isinstance(labels, list) else list(labels.values())nc = model.nc if hasattr(model, "nc") else model.model[-1].nc# check num classes and labelsassert nc == len(labels), f"Model class count {nc} != len(names) {len(labels)}"# Replace with the custom Detection Headif kwargs.get("one2many", False):if isinstance(model.model[-1], (Detect)):model.model[-1] = DetectV8(model.model[-1])model.model[-1].export = Trueelse:if isinstance(model.model[-1], (v10Detect)):print("Replacing model.model[-1] with DetectV10")model.model[-1] = DetectV10(model.model[-1])model.model[-1].export = Truemodel.model[-1].max_det = kwargs.get("max_det", 300)num_branches = model.model[-1].nl# Inputimg = torch.zeros(1, 3, *img_size).to(device)  # image size(1,3,320,320) iDetectionmodel.eval()model.float()model = model.fuse()model(img)  # dry runs# ONNX exporttry:import onnxprint()logging.info("Starting ONNX export with onnx %s..." % onnx.__version__)output_list = ["output%s_yolov6r2" % (i + 1) for i in range(num_branches)] if kwargs.get("one2many", False) else ["output_yolov10"]with BytesIO() as f:torch.onnx.export(model,img,f,verbose=False,opset_version=opset,input_names=["images"],output_names=output_list,)# Checksonnx_model = onnx.load_from_string(f.getvalue())  # load onnx modelonnx.checker.check_model(onnx_model)  # check onnx modeltry:import onnxsimlogging.info("Starting to simplify ONNX...")onnx_model, check = onnxsim.simplify(onnx_model)assert check, "assert check failed"except ImportError:logging.warning("onnxsim is not found, if you want to simplify the onnx, "+ "you should install it:\n\t"+ "pip install -U onnxsim onnxruntime\n"+ "then use:\n\t"+ f'python -m onnxsim "{output_model}" "{output_model}"')except Exception:logging.exception("Simplifier failure")onnx.save(onnx_model, output_model)logging.info("ONNX export success, saved as:\n\t%s" % output_model)except Exception:logging.exception("ONNX export failure")if kwargs.get("one2many", False):# generate anchors and sidesanchors = []# generate masksmasks = dict()logging.info("anchors:\n\t%s" % anchors)logging.info("anchor_masks:\n\t%s" % masks)jsondata = {"nn_config": {"output_format": "detection","NN_family": "YOLO","input_size": f"{img_size[0]}x{img_size[1]}","NN_specific_metadata": {"classes": nc,"coordinates": 4,"anchors": anchors,"anchor_masks": masks,"iou_threshold": 0.3,"confidence_threshold": 0.5,},},"mappings": {"labels": labels},}else:jsondata = {"nn_config": {"output_format": "detection","NN_family": "mobilenet","input_size": f"{img_size[0]}x{img_size[1]}","confidence_threshold": 0.5,},"mappings": {"labels": labels},}export_json = output_model.with_suffix(".json")export_json.write_text(json.dumps(jsondata,indent=4,))logging.info("Model data export success, saved as:\n\t%s" % export_json)# Finishlogging.info("Export complete (%.2fs).\n" % (time.time() - t))def convert(convert_tool, output_model, shaves, output_dir, name, **kwargs):t = time.time()export_dir: Path = output_dir.joinpath(name + "_openvino")export_dir.mkdir(parents=True, exist_ok=True)export_xml = export_dir.joinpath(name + ".xml")export_blob = export_dir.joinpath(name + ".blob")if convert_tool == "blobconverter":import blobconverterblob_path = blobconverter.from_onnx(model=str(output_model),data_type="FP16",shaves=shaves,use_cache=False,# version="2021.4",version="2022.1",output_dir=export_dir,optimizer_params=["--scale=255","--reverse_input_channel","--use_new_frontend",],download_ir=True,)with ZipFile(blob_path, "r", ZIP_LZMA) as zip_obj:for name in zip_obj.namelist():zip_obj.extract(name,export_dir,)blob_path.unlink()elif convert_tool == "docker":import dockerexport_dir = Path("/io").joinpath(export_dir.name)export_xml = export_dir.joinpath(name + ".xml")export_blob = export_dir.joinpath(name + ".blob")client = docker.from_env()image = client.images.pull("openvino/ubuntu20_dev", tag="2022.3.1")docker_output = client.containers.run(image=image.tags[0],command=f"bash -c \"mo -m {name}.onnx -n {name} -o {export_dir} --static_shape --reverse_input_channels --scale=255 --use_new_frontend && echo 'MYRIAD_ENABLE_MX_BOOT NO' | tee /tmp/myriad.conf >> /dev/null && /opt/intel/openvino/tools/compile_tool/compile_tool -m {export_xml} -o {export_blob} -ip U8 -VPU_NUMBER_OF_SHAVES {shaves} -VPU_NUMBER_OF_CMX_SLICES {shaves} -d MYRIAD -c /tmp/myriad.conf\"",remove=True,volumes=[f"{output_dir}:/io",],working_dir="/io",)logging.info(docker_output.decode("utf8"))else:import subprocess as sp# OpenVINO exportlogging.info("Starting to export OpenVINO...")OpenVINO_cmd = "mo --input_model %s --output_dir %s --data_type FP16 --scale 255 --reverse_input_channel" % (output_model,export_dir,)try:sp.check_output(OpenVINO_cmd, shell=True)logging.info("OpenVINO export success, saved as %s" % export_dir)except sp.CalledProcessError:logging.exception("")logging.warning("OpenVINO export failure!")logging.warning("By the way, you can try to export OpenVINO use:\n\t%s" % OpenVINO_cmd)# OAK Blob exportlogging.info("Then you can try to export blob use:")blob_cmd = ("echo 'MYRIAD_ENABLE_MX_BOOT ON' | tee /tmp/myriad.conf"+ "compile_tool -m %s -o %s -ip U8 -d MYRIAD -VPU_NUMBER_OF_SHAVES %s -VPU_NUMBER_OF_CMX_SLICES %s -c /tmp/myriad.conf"% (export_xml, export_blob, shaves, shaves))logging.info("%s" % blob_cmd)logging.info("compile_tool maybe in the path: /opt/intel/openvino/tools/compile_tool/compile_tool, if you install openvino 2022.1 with apt")logging.info("Convert complete (%.2fs).\n" % (time.time() - t))if __name__ == "__main__":args = parse_args()logging.info(args)print()output_model = args.output_dir / (args.name + ".onnx")export(output_model=output_model, **vars(args))if args.blob:convert(output_model=output_model, **vars(args))

可以使用 Netron 查看模型结构:

one2one:
在这里插入图片描述
one2many:
在这里插入图片描述

▌转换

openvino 本地转换

onnx -> openvino

mo 是 openvino_dev 2022.1 中脚本,安装命令为 pip install openvino-dev

mo --input_model yolov10n.onnx --scale=255 --reverse_input_channel

openvino -> blob

compile_tool 是 OpenVINO Runtime 中脚本

<path>/compile_tool -m yolov10n.xml 
-ip U8 -d MYRIAD 
-VPU_NUMBER_OF_SHAVES 6 
-VPU_NUMBER_OF_CMX_SLICES 6

在线转换

blobconvert 网页:http://blobconverter.luxonis.com/

  • 进入网页,按下图指示操作:
    在这里插入图片描述
  • 修改参数,转换模型:
    在这里插入图片描述
  1. 选择 onnx 模型
  2. 修改 optimizer_params 为 --data_type=FP16 --scale=255 --reverse_input_channel
  3. 修改 shaves 为 6
  4. 转换

blobconverter python 代码

blobconverter.from_onnx("yolov10n.onnx",	optimizer_params=["--scale=255","--reverse_input_channel",],shaves=6,)

blobconvert cli

blobconverter --onnx yolov10n.onnx -sh 6 -o . --optimizer-params "scale=255 --reverse_input_channel"

▌DepthAI 示例

one2one
正确解码需要可配置的网络相关参数:

  • setConfidenceThreshold – 置信度阈值,低于该阈值的对象将被过滤掉
# coding=utf-8
import cv2
import depthai as dai
import numpy as npnumClasses = 80
model = dai.OpenVINO.Blob("yolov10n.blob")
dim = next(iter(model.networkInputs.values())).dims
W, H = dim[:2]labelMap = [# "class_1","class_2","...""class_%s" % ifor i in range(numClasses)
]# Create pipeline
pipeline = dai.Pipeline()# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.MobileNetDetectionNetwork)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutNN = pipeline.create(dai.node.XLinkOut)xoutRgb.setStreamName("image")
xoutNN.setStreamName("nn")# Properties
camRgb.setPreviewSize(W, H)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)# Network specific settings
detectionNetwork.setBlob(model)
detectionNetwork.setConfidenceThreshold(0.5)# Linking
camRgb.preview.link(detectionNetwork.input)
camRgb.preview.link(xoutRgb.input)
detectionNetwork.out.link(xoutNN.input)# Connect to device and start pipeline
with dai.Device(pipeline) as device:# Output queues will be used to get the rgb frames and nn data from the outputs defined aboveimageQueue = device.getOutputQueue(name="image", maxSize=4, blocking=False)detectQueue = device.getOutputQueue(name="nn", maxSize=4, blocking=False)frame = Nonedetections = []# nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/heightdef frameNorm(frame, bbox):normVals = np.full(len(bbox), frame.shape[0])normVals[::2] = frame.shape[1]return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)def drawText(frame, text, org, color=(255, 255, 255), thickness=1):cv2.putText(frame, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), thickness + 3, cv2.LINE_AA)cv2.putText(frame, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness, cv2.LINE_AA)def drawRect(frame, topLeft, bottomRight, color=(255, 255, 255), thickness=1):cv2.rectangle(frame, topLeft, bottomRight, (0, 0, 0), thickness + 3)cv2.rectangle(frame, topLeft, bottomRight, color, thickness)def displayFrame(name, frame):color = (128, 128, 128)for detection in detections:bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))drawText(frame=frame,text=labelMap[detection.label],org=(bbox[0] + 10, bbox[1] + 20),)drawText(frame=frame,text=f"{detection.confidence:.2%}",org=(bbox[0] + 10, bbox[1] + 35),)drawRect(frame=frame,topLeft=(bbox[0], bbox[1]),bottomRight=(bbox[2], bbox[3]),color=color,)# Show the framecv2.imshow(name, frame)while True:imageQueueData = imageQueue.tryGet()detectQueueData = detectQueue.tryGet()if imageQueueData is not None:frame = imageQueueData.getCvFrame()if detectQueueData is not None:detections = detectQueueData.detectionsif frame is not None:displayFrame("rgb", frame)if cv2.waitKey(1) == ord("q"):break

one2many
正确解码需要可配置的网络相关参数:

  • setNumClasses – YOLO 检测类别的数量
  • setIouThreshold – iou 阈值
  • setConfidenceThreshold – 置信度阈值,低于该阈值的对象将被过滤掉
  • 对象将被过滤掉
# coding=utf-8
import cv2
import depthai as dai
import numpy as npnumClasses = 80
model = dai.OpenVINO.Blob("yolov10n.blob")
dim = next(iter(model.networkInputs.values())).dims
W, H = dim[:2]output_name, output_tenser = next(iter(model.networkOutputs.items()))
if "yolov6" in output_name:numClasses = output_tenser.dims[2] - 5
else:numClasses = output_tenser.dims[2] // 3 - 5labelMap = [# "class_1","class_2","...""class_%s" % ifor i in range(numClasses)
]# Create pipeline
pipeline = dai.Pipeline()# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutNN = pipeline.create(dai.node.XLinkOut)xoutRgb.setStreamName("image")
xoutNN.setStreamName("nn")# Properties
camRgb.setPreviewSize(W, H)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)# Network specific settings
detectionNetwork.setBlob(model)
detectionNetwork.setConfidenceThreshold(0.5)# Yolo specific parameters
detectionNetwork.setNumClasses(numClasses)
detectionNetwork.setCoordinateSize(4)
detectionNetwork.setAnchors([])
detectionNetwork.setAnchorMasks({})
detectionNetwork.setIouThreshold(0.5)# Linking
camRgb.preview.link(detectionNetwork.input)
camRgb.preview.link(xoutRgb.input)
detectionNetwork.out.link(xoutNN.input)# Connect to device and start pipeline
with dai.Device(pipeline) as device:# Output queues will be used to get the rgb frames and nn data from the outputs defined aboveimageQueue = device.getOutputQueue(name="image", maxSize=4, blocking=False)detectQueue = device.getOutputQueue(name="nn", maxSize=4, blocking=False)frame = Nonedetections = []# nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/heightdef frameNorm(frame, bbox):normVals = np.full(len(bbox), frame.shape[0])normVals[::2] = frame.shape[1]return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)def drawText(frame, text, org, color=(255, 255, 255), thickness=1):cv2.putText(frame, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), thickness + 3, cv2.LINE_AA)cv2.putText(frame, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness, cv2.LINE_AA)def drawRect(frame, topLeft, bottomRight, color=(255, 255, 255), thickness=1):cv2.rectangle(frame, topLeft, bottomRight, (0, 0, 0), thickness + 3)cv2.rectangle(frame, topLeft, bottomRight, color, thickness)def displayFrame(name, frame):color = (128, 128, 128)for detection in detections:bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))drawText(frame=frame,text=labelMap[detection.label],org=(bbox[0] + 10, bbox[1] + 20),)drawText(frame=frame,text=f"{detection.confidence:.2%}",org=(bbox[0] + 10, bbox[1] + 35),)drawRect(frame=frame,topLeft=(bbox[0], bbox[1]),bottomRight=(bbox[2], bbox[3]),color=color,)# Show the framecv2.imshow(name, frame)while True:imageQueueData = imageQueue.tryGet()detectQueueData = detectQueue.tryGet()if imageQueueData is not None:frame = imageQueueData.getCvFrame()if detectQueueData is not None:detections = detectQueueData.detectionsif frame is not None:displayFrame("rgb", frame)if cv2.waitKey(1) == ord("q"):break

▌参考资料

https://docs.oakchina.cn/en/latest/
https://www.oakchina.cn/selection-guide/


OAK中国
| OpenCV AI Kit在中国区的官方代理商和技术服务商
| 追踪AI技术和产品新动态

戳「+关注」获取最新资讯↗↗

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/845076.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Microsoft Fabric 是什么?

最近半个月没有更新内容&#xff0c;原因是什么呢&#xff1f; 原因是花了两周的时间备考了一下"Microsoft Certified: Fabric Analytics Engineer Associate"的考试认证。 非常幸运考试通过了。 那什么是Microsoft Fabric 呢&#xff1f; Microsoft Fabric 是一个…

运筹学_4.整数规划

文章目录 引言4.1 分枝定界方法求解整数规划问题整数规划的分类整数规划解法概述分支定界法 4.2 0-1整数规划0-1整数规划的数学模型隐枚举法求解0-1规划问题 4.3 指派问题(分配问题)的匈牙利解法指派问题的数学模型指派问题的匈牙利解法 引言 规划中的决策变量(全部或部分)限制…

【备战蓝桥杯】蓝桥杯省一笔记:算法模板笔记(Java)

蓝桥杯 0、快读快写模板1、回文判定2、前缀和3、差分4、二分查找5、快速幂6、判断素数7、gcd&lcm8、进制转换9、位运算10、字符串常用API11、n的所有质因子12、n的质因子个数13、n的约数个数14、n阶乘的约数个数15、n的约数和16、阶乘 & 双阶乘17、自定义升序降序18、动…

2024盘古石初赛(服务器部分)

赛后总结 这次初赛就有20道服务器部分赛题&#xff0c;做的情况一般&#xff0c;错了5道题这样&#xff0c;主要原因就是出在第二个网站服务器没有重构起来 今天来复现一下 这次的服务器部分我直接用仿真仿起来就开找了 第一台IM前期配置 先把网配置好&#xff0c;然后ssh…

如此简单,一文带你玩转接口自动化上(Python + Pytest + Requests + Allure )

一. 前言 哈喽大伙们好&#xff0c;好久不见距离上次更新博客已经有一年之久了&#xff0c;这将近一年的时间小编主要的时间都花在了实习和24届校招上面了&#xff0c;最终也是收获满满&#xff0c;选择了一个还不错的offer&#xff0c;感谢一路走来的自己和身边朋友的帮助&…

基于Three.js实现的3D立方体动画

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 基于Three.js实现的3D立方体动画 应用场景 该代码段适用于需要在网页中创建交互式3D场景的场景。例如&#xff0c;可以用于展示产品、创建游戏或制作视觉效果。 基本功能 此代码段使用Three.js库创建了一个…

【机器学习】随机森林:深度解析与应用实践

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 随机森林&#xff1a;深度解析与应用实践引言1. 随机森林基础1.1 什么是随机森林…

Android更新优化 - 增量更新是如何节省用户时间和流量的

增量更新和全量更新 我想玩过大型手游的人都知道&#xff0c;手游的安装包非常大&#xff0c;因为资源图片众多。而你每次更新都把所有文件都更新下来&#xff0c;是非常耗时的&#xff0c;对吧。耗时是一个方面&#xff0c;有些人在户外开的是移动网络&#xff0c;动不动就几…

计算机组成原理·海明编码及其实验

前言&#xff1a;海明编码这一块在刚开始的时候没有弄懂&#xff0c;后面通过做实验、复习慢慢摸清了门道。在学习计算机组成原理的过程中&#xff0c;实验实践是很重要的&#xff0c;它会让你去搞清楚事情背后的原理&#xff0c;逼着你学会你没听懂的东西。这篇文章会从海明码…

Check Point 安全网关任意文件读取漏洞复现(CVE-2024-24919)

Check Point 安全网关任意文件读取漏洞复现(CVE-2024-24919) 1.漏洞描述 Check Point Security Gateways 是 Check Point Sofware 提供的一系列 网络安全Q解决方案。这些解决方案包括下一代防火墙(NGFW)、数据中心安全网关和 A1驱动的量子网关&#xff0c;旨在为企业提供针对…

@Value 读取环境变量配置

在项目开发过程中&#xff0c;有必要使用一些灰色规则&#xff08;即仅用于开发使用过程中的逻辑控制变量&#xff09;。 比如&#xff0c;本地开发中&#xff0c;一些业务逻辑需要调用第三方代码&#xff0c;但又在本地调不通&#xff0c;怎么办。只能通过 if(本地开发) {mock…

【开源】渔具租赁系统 JAVA+Vue.js+SpringBoot+MySQL

目录 一、项目介绍 1.1渔具档案模块 1.2渔具租赁模块 1.3渔具归还模块 1.4在线留言模块 二、项目截图 三、核心代码 一、项目介绍 Vue.jsSpringBoot前后端分离新手入门项目《渔具租赁系统》&#xff0c;包括渔具档案模块、渔具租赁模块、渔具归还模块、在线留言模块和部…

当新媒体运营开始说真话,这些道理你真的懂么?沈阳新媒体运营培训

运营新人&#xff0c;尤其是刚毕业、啥都不会的大学生&#xff0c;一定要认清的现实就是&#xff1a;虽然新媒体运营这个岗位门槛比较低&#xff0c;薪资也比较香&#xff0c;但绝不是养老型的工作。 平时大家还是很忙的&#xff0c;所以一定要摒弃学生思维&#xff0c;千万别…

02--nginx代理缓存

前言&#xff1a;比较常用的用法反向代理&#xff0c;和缓存的一些操作&#xff0c;用虚拟环境复刻出来&#xff0c;里面参数不用详细记录&#xff0c;用作复习&#xff0c;使用时直接查找即可。环境搭建过程参考前一篇文章nginx基础。 1、基础环境 IP角色作用192.168.189.143…

freertos初体验 - 在stm32上移植

1. 说明 freertos内核 非常精简&#xff0c;代码量也很少&#xff0c;官方也针对主流的编译器和内核准备好了移植文件&#xff0c;所以 freertos 的移植是非常简单的&#xff0c;很多工具&#xff08;例如CubeMX&#xff09;点点鼠标就可以生成一个 freertos 的工程&#xff0…

AquaCrop农业水资源管理,模拟作物生长过程中水分的需求与消耗

AquaCrop是由世界粮食及农业组织&#xff08;FAO&#xff09;开发的一个先进模型&#xff0c;旨在研究和优化农作物的水分生产效率。这个模型在全球范围内被广泛应用于农业水管理&#xff0c;特别是在制定农作物灌溉计划和应对水资源限制方面显示出其强大的实用性。AquaCrop 不…

VR导航的实现原理、技术优势和应用场景

VR导航通过虚拟现实技术提供沉浸式环境&#xff0c;结合室内定位技术实现精准导航。目前&#xff0c;VR导航已在多个领域展现出其独特的价值和潜力&#xff0c;预示着智能导航系统的未来发展。 一、实现原理 VR导航技术依托于虚拟现实(VR)和室内定位系统。VR技术利用计算机模…

Python考试复习---day5

1.打印商品名 ainput().split() print("商品列表&#xff1a;") for i,name in enumerate(a):print("{}\t{}".format(i,name))enumerate----枚举--利用它可以同时获得索引和值 enumerate多用于在for循环中得到计数 例如&#xff1a; list1 ["这&qu…

Netty SSL双向验证

Netty SSL双向验证 1. 环境说明2. 生成证书2.1. 创建根证书 密钥证书2.2. 生成请求证书密钥2.3. 生成csr请求证书2.4. ca证书对server.csr、client.csr签发生成x509证书2.5. 请求证书PKCS#8编码2.6. 输出文件 3. Java代码3.1. Server端3.2. Client端3.3. 证书存放 4. 运行效果4…

消费者组到底是什么?no.15

Kafka的消费者组。 消费者组&#xff0c;即Consumer Group&#xff0c;应该算是Kafka比较有亮点的设计了。那么何谓Consumer Group呢&#xff1f;用一句话概括就是&#xff1a;Consumer Group是Kafka提供的可扩展且具有容错性的消费者机制。既然是一个组&#xff0c;那么组内必…