基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

 第一步:准备数据

17种猴子动物数据:

self.class_indict = ["白头卷尾猴", "弥猴", "山魈", "松鼠猴", "叶猴", "银色绒猴", "印度乌叶猴", "疣猴", "侏绒","白秃猴", "赤猴", "滇金丝猴", "狒狒", "黑色吼猴", "黑叶猴", "金丝猴", "懒猴"],总共有1800张图片,每个文件夹单独放一种数据

第二步:搭建模型

本文选择一个ShufflenetV2网络,其原理介绍如下:

shufflenet v2是旷视提出的shufflenet的升级版本,并被ECCV2018收录。论文说在同等复杂度下,shufflenet v2比shufflenet和mobilenetv2更准确。shufflenet v2是基于四条准则对shufflenet v1进行改进而得到的,这四条准则如下:

(G1)同等通道大小最小化内存访问量 对于轻量级CNN网络,常采用深度可分割卷积(depthwise separable convolutions),其中点卷积( pointwise convolution)即1x1卷积复杂度最大。这里假定输入和输出特征的通道数分别为C1和C2,经证明仅当C1=C2时,内存使用量(MAC)取最小值,这个理论分析也通过实验得到证实。更详细的证明见参考【1】

(G2)过量使用组卷积会增加MAC 组卷积(group convolution)是常用的设计组件,因为它可以减少复杂度却不损失模型容量。但是这里发现,分组过多会增加MAC。更详细的证明见参考【1】

(G3)网络碎片化会降低并行度 一些网络如Inception,以及Auto ML自动产生的网络NASNET-A,它们倾向于采用“多路”结构,即存在一个lock中很多不同的小卷积或者pooling,这很容易造成网络碎片化,减低模型的并行度,相应速度会慢,这也可以通过实验得到证明。

(G4)不能忽略元素级操作 对于元素级(element-wise operators)比如ReLU和Add,虽然它们的FLOPs较小,但是却需要较大的MAC。这里实验发现如果将ResNet中残差单元中的ReLU和shortcut移除的话,速度有20%的提升。

根据前面的4条准则,作者分析了ShuffleNet v1设计的不足,并在此基础上改进得到了ShuffleNetv2,两者模块上的对比下图所示

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)训练代码:

import os
import math
import argparseimport torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_schedulerfrom model import shufflenet_v2_x1_0
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluatedef main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")print(args)print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')tb_writer = SummaryWriter()if os.path.exists("./weights") is False:os.makedirs("./weights")train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)# 如果存在预训练权重则载入model = shufflenet_v2_x1_0(num_classes=args.num_classes).to(device)if args.weights != "":if os.path.exists(args.weights):weights_dict = torch.load(args.weights, map_location=device)load_weights_dict = {k: v for k, v in weights_dict.items()if model.state_dict()[k].numel() == v.numel()}print(model.load_state_dict(load_weights_dict, strict=False))else:raise FileNotFoundError("not found weights file: {}".format(args.weights))# 是否冻结权重if args.freeze_layers:for name, para in model.named_parameters():# 除最后的全连接层外,其他权重全部冻结if "fc" not in name:para.requires_grad_(False)pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=4E-5)# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)for epoch in range(args.epochs):# trainmean_loss = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)scheduler.step()# validateacc = evaluate(model=model,data_loader=val_loader,device=device)print("[epoch {}] accuracy: {}".format(epoch, round(acc, 3)))tags = ["loss", "accuracy", "learning_rate"]tb_writer.add_scalar(tags[0], mean_loss, epoch)tb_writer.add_scalar(tags[1], acc, epoch)tb_writer.add_scalar(tags[2], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=17)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=4)parser.add_argument('--lr', type=float, default=0.01)parser.add_argument('--lrf', type=float, default=0.1)# 数据集所在根目录# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default=r"G:\demo\data\monkeys\training")# shufflenetv2_x1.0 官方权重下载地址# https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pthparser.add_argument('--weights', type=str, default='./shufflenetv2_x1-5666bf0f80.pth',help='initial weights path')parser.add_argument('--freeze-layers', type=bool, default=False)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()main(opt)

第四步:统计正确率

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

有问题可以私信或者留言,有问必答

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/842620.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

做抖音小店不懂这四个“重点”!那就别怪你的店铺,做不长久!

我相信大家做抖音小店,都去抖音刷过知识点,也去浏览器学习过技巧 但在这里,我给大家泼盆冷水 方法再多!这四点不搞明白,那你的店铺出几天单,也就再也做不起来了 哪四点?请认真的看下去&#…

django-celery-beat自动调度异步任务

Celery是一个简单、灵活且可靠的分布式系统,专门用于处理大量消息的实时任务调度。它支持使用任务队列的方式在分布的机器、进程、线程上执行任务调度。Celery不仅支持异步任务(如发送邮件、文件上传、图像处理等耗时操作),还支持…

2024.05.27学习记录

1、面经复习: 实际工作经验章节 2、代码随想录刷题:动态规划剩下部分和单调栈 3、rosebush 组件库完成Input 和 AutoComplete部分内容

2024甘肃省三支一扶报名流程详细图解

预计报名时间:2024年5月27日9:00至5月31日18:00 2024甘肃省三支一扶报名流程 登录甘肃人力人力资源考试中心,选择网上报名 进入账户登录,首次登录同学请先注册账号。 注册账号,认真填写,仔细核对信息。…

惠海 H6901B升压恒流3.7V 7.4V 12V 24V 30V 36V 48V 60V 80V 100V调光无频闪细腻顺滑

H6901B是一款升压型LED恒流驱动芯片,具有良好稳定性的特点。H6901B的主要特点包括宽输入电压范围(2.7V-100V)、高工作频率(1MHz)以及多种保护功能(如芯片供电欠压保护、过温保护、软启动等)。此…

美颜技术揭秘:美颜SDK与美颜接口的开发实践

一、美颜技术的基本原理 1.1面部检测与特征点识别 面部检测是美颜技术的第一步,通过计算机视觉算法检测图像中的人脸位置。常用的方法有Haar特征、卷积神经网络(CNN)等。 1.2图像增强与美化 -磨皮 -美白 -眼部增强 -脸型优化 1.3实时处…

【爬虫软件】2024最新短视频评论区抓取工具

一、背景说明 1.0 采集目标 采集DOU音评论数据对引流截流和获客有很多好处。首先,通过分析DOU音评论数据,我们可以更好地了解用户对于产品或内容的喜好和需求,从而调整营销策略,吸引更多用户关注和点击。其次,评论数据…

解密MySQL中的临时表:探究临时表的神奇用途

欢迎来到我的博客,代码的世界里,每一行都是一个故事 解密MySQL中的临时表:探究临时表的神奇用途 前言临时表的定义与分类创建与使用临时表临时表的操作与管理优化与性能提升注意事项与最佳实践 前言 在数据库管理中,临时表是一个…

PGP安装以及汉化

目录 1.安装 2.汉化 1.安装 (1)进入setup目录,双击安装包开始安装 (2)选择默认语言English (3)接受安装协议 I accept the license agreement (4)选择第二项 Do not display the Release Notes (5)选择“…

第十四 Elasticsearch介绍和安装

docker-compose安装 kibana: image: docker.elastic.co/kibana/kibana:7.5.1 container_name: kibana ports: - "5601:5601" environment: ELASTICSEARCH_HOSTS: http://elasticsearch:9200 depends_on: - elasticsearch…

按尺寸筛选轮廓图中的轮廓

1.按短边筛选 原始轮廓图: import cv2 import numpy as np# 读取轮廓图 contour_image cv2.imread(..\\IMGS\\pp_edge.png, cv2.IMREAD_GRAYSCALE)# 使用cv2.findContours()函数获取所有轮廓 contours, _ cv2.findContours(contour_image, cv2.RETR_EXTERNAL, cv2…

学习Uni-app开发小程序Day17

今天开始,就把uni-app前期使用的全部学完了,现在就把以前学习的,做成一案例,中间有未讲的,在进行补充,这里是根据老师视频进行项目案例编写的。 先弄出效果图,然后在根据效果图进行代码的编辑 …

uni-app 微信 支付宝 小程序 使用 longpress 实现长按删除功能,非常简单 只需两步

1、先看效果 2、直接上代码 ui结构 <view class"bind" longpress"deleteImage" :data-index"index"><view class"bind_left">绑定设备</view><view class"bind_right"><view class"bind_t…

Raven2掠夺者2渡鸦2角色创建、游戏预下载、账号怎么注册教程

《渡鸦2》&#xff08;Raven 2&#xff09;是由韩国开发的一款大型多人在线角色扮演游戏&#xff08;MMORPG&#xff09;类型的手游&#xff0c;作为前作《Raven》的续集&#xff0c;继承并发展了其黑暗奇幻世界观&#xff0c;同时在游戏设计和内容上进行了大量创新。游戏预计于…

Spring:IoC容器(基于注解管理bean)

1. HelloWorld * 引入依赖* 开启组件扫描* 使用注解定义 Bean* 依赖注入 2.开启组件扫描 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:xsi"http://www.w3.org/20…

阿里云OSS文件上传和下载完整指南

目录 前言 一、前期准备 二、文件上传 上传进度条 三、文件下载 1.流式下载 2.下载到本地 3.进度条 前言 文件上传是常见需求&#xff0c;一般我们不会把文件直接上传到应用服务器&#xff0c;因为单台服务器存储空间是有限的&#xff0c;不好扩展。阿里云对象存储&…

Diffusion Model 和 Stable Diffusion 详解

文章目录 Diffusion Model 基础生成模型DDPM概述向前扩散过程前向扩散的逐步过程前向扩散的整体过程 反向去噪过程网络结构训练和推理过程训练过程推理过程优化目标 详细数学推导数学基础向前扩散过程反向去噪过程 Stable Diffusion组成结构运行流程网络结构VAE 模型文本编码器…

MyBatis的基础操作

目录 一.什么是MyBatis? 二.使用MyBatis的准备工作 1.引入依赖: 2.配置数据库连接字符串(建立MaBatis和MySQL的连接) 3.在model包中建立数据库对应的实体类UserInfo 三.通过注解的方式实现MyBatis的开发 1.插入语句(Insert) 2.删除语句(Delete) 3.更新语句(Update) 4…

突破乙肝治疗瓶颈新希望!恒瑞医药小核酸疗法领跑进入II期临床试验

近日&#xff0c;恒瑞医药的针对慢性乙型肝炎的小核酸疗法要准备开启一项多中心、随机、开放、平行设计的 II 期研究,旨在评估 HRS-5635 注射液单独或与其他药物联合治疗慢性乙型肝炎患者的疗效和安全性二期临床实验。去年开启的1期&#xff0c;今年就要准备2期实验了。 咱们国…

Java核心: Stream流的实现原理

Java 8之后我们对Stream的使用都已经习以为常了&#xff0c;它帮助我们从怎么做的细节里脱身&#xff0c;只要告诉它做什么即可。这一篇文章我们主要讲Java Stream的实现原理&#xff0c;手写一个Stream框架&#xff0c;然后再来讲解Java Stream的核心类&#xff0c;做到知其然…