docker-compose安装
kibana:
image: docker.elastic.co/kibana/kibana:7.5.1
container_name: kibana
ports:
- "5601:5601"
environment:
ELASTICSEARCH_HOSTS: http://elasticsearch:9200
depends_on:
- elasticsearch
elasticsearch:
# 使用elasticsearch:7.5.1镜像
image: elasticsearch:7.5.1
container_name: elasticsearch
# 设置环境变量:集群名称为elasticsearch,以确保节点互相发现
environment:
cluster.name: elasticsearch
# 使用单节点发现模式
discovery.type: single-node
ES_JAVA_OPTS: "-Xms64m -Xmx251m"
# 将9200端口映射到主机端口
ports:
- "9200:9200"
- "9300:9300"
# 挂载elasticsearch数据目录
volumes:
- /docker/elasticsearch/data:/usr/share/elasticsearch/data
ik分词器
docker exec -it elasticsearch bash/usr/share/elasticsearch/bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.5.1/elasticsearch-analysis-ik-7.5.1.zip重启
1.Elasticsearch介绍和安装
用户访问我们的首页,一般都会直接搜索来寻找自己想要购买的商品。
而商品的数量非常多,而且分类繁杂。如果能正确的显示出用户想要的商品,并进行合理的过滤,尽快促成交易,是搜索系统要研究的核心。
面对这样复杂的搜索业务和数据量,使用传统数据库搜索就显得力不从心,一般我们都会使用全文检索技术,比如之前大家学习过的Solr。
不过今天,我们要讲的是另一个全文检索技术:Elasticsearch。
1.1.简介
1.1.1.Elastic
Elastic官网:欢迎来到 Elastic — Elasticsearch 和 Kibana 的开发者 | Elastic
Elastic有一条完整的产品线及解决方案:Elasticsearch、Kibana、Logstash等,前面说的三个就是大家常说的ELK技术栈。
1.1.2.Elasticsearch
Elasticsearch官网:Elasticsearch:官方分布式搜索和分析引擎 | Elastic
如上所述,Elasticsearch具备以下特点:
-
分布式,无需人工搭建集群(solr就需要人为配置,使用Zookeeper作为注册中心)
-
Restful风格,一切API都遵循Rest原则,容易上手
-
近实时搜索,数据更新在Elasticsearch中几乎是完全同步的。
1.1.3.版本
目前Elasticsearch最新的版本是6.3.1,我们就使用6.3.0
需要虚拟机JDK1.8及以上
1.2.安装和配置
为了模拟真实场景,我们将在linux下安装Elasticsearch。
1.2.1.上传安装包,并解压
我们将安装包上传到:/home/leyou目录
解压缩:
tar -zxvf elasticsearch-6.2.4.tar.gz
我们把目录重命名:
进入,查看目录结构:
1.2.2.新建一个用户leyou
出于安全考虑,elasticsearch默认不允许以root账号运行。
创建用户:
user add leyou
设置密码:
passwd leyou
切换用户:
su - leyou
给leyou用户可以修改的权限
chown leyou:leyou elasticsearch-6.2.4 -R
拥有--leyou用户:leyou这个组-- elasticsearch-6.2.4这个文件---R表示修改里面所有的内容
1.2.3.修改配置
我们进入config目录:cd config
需要修改的配置文件有两个:
-
jvm.options
Elasticsearch基于Lucene的,而Lucene底层是java实现,因此我们需要配置jvm参数。
编辑jvm.options:
vim jvm.options
默认配置如下:
-Xms1g -Xmx1g
内存占用太多了,我们调小一些:
-Xms512m -Xmx512m一个是最大内存,一个是最小可用,一般是设置一样的,没有最小内存,不用空闲还要去做垃圾回收(垃圾回收会导致程序暂定),
1.避免频繁的¥¥回收: 如果最小可用内存比最大内存要小很多,则 JVM 在运行过程中可能会不断地进行¥¥回收,这会消耗大量的 CPU 时间和系统资源,并且可能会导致应用程序响应变慢。尽管 JVM 可以自动增加堆内存的大小,但它并不能保证在出现内存不足时会在正确的时间点增加内存。
2.提高应用程序的性能:应用程序通常需要处理各种各样的事务,并且使用的内存大小也会随时间变化。将最小内存和最大内存设置为相同的值可以确保 JVM 开始执行时具有足够的内存,从而提高应用程序的性能。
-
elasticsearch.yml
vim elasticsearch.yml
-
修改数据和日志目录:
path.data: /home/leyou/elasticsearch/data # 数据目录位置 path.logs: /home/leyou/elasticsearch/logs # 日志目录位置
我们把data和logs目录修改指向了elasticsearch的安装目录。但是这两个目录并不存在,因此我们需要创建出来。
进入elasticsearch的根目录,然后创建:
mkdir data mkdir logs
-
修改绑定的ip:
network.host: 0.0.0.0 # 绑定到0.0.0.0,允许任何ip来访问0.0.0.0表示任何主机都可以访问
默认只允许本机访问,修改为0.0.0.0后则可以远程访问
目前我们是做的单机安装,如果要做集群,只需要在这个配置文件中添加其它节点信息即可。
elasticsearch.yml的其它可配置信息:
属性名 | 说明 |
---|---|
cluster.name | 配置elasticsearch的集群名称,默认是elasticsearch。建议修改成一个有意义的名称。 |
node.name | 节点名,es会默认随机指定一个名字,建议指定一个有意义的名称,方便管理 |
path.conf | 设置配置文件的存储路径,tar或zip包安装默认在es根目录下的config文件夹,rpm安装默认在/etc/ elasticsearch |
path.data | 设置索引数据的存储路径,默认是es根目录下的data文件夹,可以设置多个存储路径,用逗号隔开 |
path.logs | 设置日志文件的存储路径,默认是es根目录下的logs文件夹 |
path.plugins | 设置插件的存放路径,默认是es根目录下的plugins文件夹 |
bootstrap.memory_lock | 设置为true可以锁住ES使用的内存,避免内存进行swap |
network.host | 设置bind_host和publish_host,设置为0.0.0.0允许外网访问 |
http.port | 设置对外服务的http端口,默认为9200。 |
transport.tcp.port | 集群结点之间通信端口 |
discovery.zen.ping.timeout | 设置ES自动发现节点连接超时的时间,默认为3秒,如果网络延迟高可设置大些 |
discovery.zen.minimum_master_nodes | 主结点数量的最少值 ,此值的公式为:(master_eligible_nodes / 2) + 1 ,比如:有3个符合要求的主结点,那么这里要设置为2 |
1.3.运行
进入elasticsearch/bin目录,可以看到下面的执行文件:
然后输入命令:
./elasticsearch
发现报错了,启动失败:
1.3.1.错误1:内核过低
我们使用的是centos6,其linux内核版本为2.6。而Elasticsearch的插件要求至少3.5以上版本。不过没关系,我们禁用这个插件即可。
修改elasticsearch.yml文件,在最下面添加如下配置:
bootstrap.system_call_filter: false
然后重启
1.3.2.错误2:文件权限不足
再次启动,又出错了:
[1]: max file descriptors [4096] for elasticsearch process likely too low, increase to at least [65536]
我们用的是leyou用户,而不是root,所以文件权限不足。
首先用root用户登录。
然后修改配置文件:
vim /etc/security/limits.conf
添加下面的内容:
* soft nofile 65536 * hard nofile 131072 * soft nproc 4096 * hard nproc 4096
1.3.3.错误3:线程数不够
刚才报错中,还有一行:
[1]: max number of threads [1024] for user [leyou] is too low, increase to at least [4096]
这是线程数不够。
继续修改配置:
vim /etc/security/limits.d/90-nproc.conf
修改下面的内容:
* soft nproc 1024
改为:
* soft nproc 4096
1.3.4.错误4:进程虚拟内存
[3]: max virtual memory areas vm.max_map_count [65530] likely too low, increase to at least [262144]
vm.max_map_count:限制一个进程可以拥有的VMA(虚拟内存区域)的数量,继续修改配置文件, :
vim /etc/sysctl.conf
添加下面内容:
vm.max_map_count=655360
然后执行命令:
sysctl -p
1.3.5.重启终端窗口
所有错误修改完毕,一定要重启你的 Xshell终端,否则配置无效。
exit后再重新连接
1.3.6.启动
再次启动,终于成功了!
可以看到绑定了两个端口:
-
9300:集群节点间通讯接口
-
9200:客户端访问接口
我们在浏览器中访问:http://192.168.56.101:9200
1.4.安装kibana
1.4.1.什么是Kibana?
Kibana是一个基于Node.js的Elasticsearch索引库数据统计工具,可以利用Elasticsearch的聚合功能,生成各种图表,如柱形图,线状图,饼图等。
而且还提供了操作Elasticsearch索引数据的控制台,并且提供了一定的API提示,非常有利于我们学习Elasticsearch的语法。
1.4.2.安装
因为Kibana依赖于node,我们的虚拟机没有安装node,而window中安装过。所以我们选择在window下使用kibana。
最新版本与elasticsearch保持一致,也是6.3.0(版本一致)
解压到特定目录即可
1.4.3.配置运行
配置
进入安装目录下的config目录,修改kibana.yml文件:
修改elasticsearch服务器的地址:
elasticsearch.url: "http://192.168.56.101:9200"
而如果设置store为true,就会在_source
以外额外存储一份数据,多余,因此一般我们都会将store设置为false,事实上,store的默认值就是false。
运行
进入安装目录下的bin目录:
双击运行:
发现kibana的监听端口是5601
我们访问:http://127.0.0.1:5601
1.4.4.控制台
选择左侧的DevTools菜单,即可进入控制台页面:
在页面右侧,我们就可以输入请求,访问Elasticsearch了。
1.5.安装ik分词器
Lucene的IK分词器早在2012年已经没有维护了,现在我们要使用的是在其基础上维护升级的版本,并且开发为ElasticSearch的集成插件了,与Elasticsearch一起维护升级,版本也保持一致,最新版本:6.3.0
1.5.1.安装
上传课前资料中的zip包,解压到Elasticsearch目录的plugins目录中:
使用unzip命令解压:
unzip elasticsearch-analysis-ik-6.3.0.zip -d ik-analyzer
然后重启elasticsearch:
1.5.2.测试
大家先不管语法,我们先测试一波。
在kibana控制台输入下面的请求:
POST _analyze
{
"analyzer": "ik_max_word",
"text": "我是中国人"
}
运行得到结果:
{
"tokens": [
{
"token": "我",
"start_offset": 0,
"end_offset": 1,
"type": "CN_CHAR",
"position": 0
},
{
"token": "是",
"start_offset": 1,
"end_offset": 2,
"type": "CN_CHAR",
"position": 1
},
{
"token": "中国人",
"start_offset": 2,
"end_offset": 5,
"type": "CN_WORD",
"position": 2
},
{
"token": "中国",
"start_offset": 2,
"end_offset": 4,
"type": "CN_WORD",
"position": 3
},
{
"token": "国人",
"start_offset": 3,
"end_offset": 5,
"type": "CN_WORD",
"position": 4
}
]
}
1.7.API
Elasticsearch提供了Rest风格的API,即http请求接口,而且也提供了各种语言的客户端API
1.7.1.Rest风格API(就是http请求可以访问,用postman也可以测试)
文档地址:Elasticsearch Guide [8.7] | Elastic
1.7.2.客户端API
Elasticsearch支持的客户端非常多:Elasticsearch Clients | Elastic
点击Java Rest Client后,你会发现又有两个:
Low Level Rest Client是低级别封装,提供一些基础功能,但更灵活
High Level Rest Client,是在Low Level Rest Client基础上进行的高级别封装,功能更丰富和完善,而且API会变的简单
1.7.3.如何学习
建议先学习Rest风格API,了解发起请求的底层实现,请求体格式等。
2.操作索引
2.1.基本概念
Elasticsearch也是基于Lucene的全文检索库,本质也是存储数据,很多概念与MySQL类似的。
对比关系:
索引(indices)--------------------------------Databases 数据库
类型(type)-----------------------------Table 数据表
文档(Document)----------------Row 行
字段(Field)-------------------Columns 列
详细说明:
概念 | 说明 |
---|---|
索引库(indices) | indices是index的复数,代表许多的索引, |
类型(type) | 类型是模拟mysql中的table概念,一个索引库下可以有不同类型的索引,比如商品索引,订单索引,其数据格式不同。不过这会导致索引库混乱,因此未来版本中会移除这个概念 |
文档(document) | 存入索引库原始的数据。比如每一条商品信息,就是一个文档 |
字段(field) | 文档中的属性 |
映射配置(mappings) | 字段的数据类型、属性、是否索引、是否存储等特性 |
是不是与Lucene和solr中的概念类似。
另外,在SolrCloud中,有一些集群相关的概念,在Elasticsearch也有类似的:
-
索引集(Indices,index的复数):逻辑上的完整索引
-
分片(shard):数据拆分后的各个部分
-
副本(replica):每个分片的复制
要注意的是:Elasticsearch本身就是分布式的,因此即便你只有一个节点,Elasticsearch默认也会对你的数据进行分片和副本操作,当你向集群添加新数据时,数据也会在新加入的节点中进行平衡。
2.2.创建索引
2.2.1.语法
Elasticsearch采用Rest风格API,因此其API就是一次http请求,你可以用任何工具发起http请求
创建索引的请求格式:
-
请求方式:PUT
-
请求路径:/索引库名
-
请求参数:json格式:
{ "settings": { "number_of_shards": 3, "number_of_replicas": 2 } }
-
settings:索引库的设置
-
number_of_shards:分片数量
-
number_of_replicas:副本数量
-
-
2.2.2.测试
我们先用RestClient来试试
响应:
可以看到索引创建成功了。
2.2.3.使用kibana创建
kibana的控制台,可以对http请求进行简化,示例:
相当于是省去了elasticsearch的服务器地址
而且还有语法提示,非常舒服。
2.3.查看索引设置
语法
Get请求可以帮我们查看索引信息,格式:
GET /索引库名
或者,我们可以使用*来查询所有索引库配置:
2.4.删除索引
删除索引使用DELETE请求
语法
DELETE /索引库名
示例
再次查看heima2:
当然,我们也可以用HEAD请求,查看索引是否存在:
2.5.映射配置
索引有了,接下来肯定是添加数据。但是,在添加数据之前必须定义映射。
什么是映射?
映射是定义文档的过程,文档包含哪些字段,这些字段是否保存,是否索引,是否分词等
只有配置清楚,Elasticsearch才会帮我们进行索引库的创建(不一定)