Atlas 200 DK(Model 3000)安装MindSpore Ascend版本

一、参考资料

mindspore快速安装

二、重要说明

经过博主多次尝试多个版本,Atlas 200 DK(Model 3000)无法安装MindSpore Ascend版本

三、准备工作

1. 测试环境

设备型号:Atlas 200 DK(Model: 3000)
Operating System + Version: Ubuntu 18.04.6 LTS
CPU Type: 8核Cortex-A55
AI CPU number: 2
control CPU number: 6
RAM: 8GB 
miscroSD: 128GB
CANN: 6.0.RC1.alpha005
HwHiAiUser@davinci-mini:~$ npu-smi info -t aicpu-config -i 0 -c 0Current AI CPU number          : 2Current control CPU number     : 6Number of AI CPUs set          : 2Number of control CPUs set     : 6

2. MindSpore与CANN版本对齐

通过 链接 查询MindSpore与Ascend配套软件包的版本配套关系。

在这里插入图片描述

MindSpore与CANN的版本强绑定,如果当前设备无法升级CANN 6.0.1,则无法使用MindSpore 1.10.0

3. 安装mindspore_ascend

详细过程,请参考:pip方式安装MindSpore Ascend 310版本

4. 验证是否安装成功

4.1 方法一

import mindspore as ms# ms.set_context(device_target='CPU')
# ms.set_context(device_target='GPU')
ms.set_context(device_target="Ascend")
ms.set_context(device_id=0)
mindspore.run_check()

如果输出以下结果,则说明mindspore_ascend安装成功。

MindSpore version: 版本号
The result of multiplication calculation is correct, MindSpore has been installed on platform [Ascend] successfully!

4.2 方法二

import numpy as np
import mindspore as ms
import mindspore.ops as opsms.set_context(device_target="Ascend")
x = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(ops.add(x, y))

如果输出以下结果,则说明mindspore_ascend安装成功。

[[[[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]][[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]][[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]]]]

4.3 方法三

ascend310_single_op_sample

这是一个[1, 2, 3, 4][2, 3, 4, 5]相加的简单样例,代码工程目录结构如下:

└─ascend310_single_op_sample├── CMakeLists.txt                    // 编译脚本├── README.md                         // 使用说明├── main.cc                           // 主函数└── tensor_add.mindir                 // MindIR模型文件
unzip ascend310_single_op_sample.zip
cd ascend310_single_op_sample# 编译
cmake . -DMINDSPORE_PATH=`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`
make# 执行
./tensor_add_sample

如果输出以下结果,则说明mindspore_ascend安装成功。

3
5
7
9

四、测试代码

1. 示例一

用MindSpore搭建模型,并进行测试。

"""
MindSpore implementation of `MobileNetV1`.
Refer to MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
"""
import timefrom mindspore import nn, Tensor, ops
import mindspore.common.initializer as init
import mindspore as ms
from PIL import Image
from mindcv.data import create_transforms
import numpy as npdef depthwise_separable_conv(inp: int, oup: int, stride: int) -> nn.SequentialCell:return nn.SequentialCell(# dwnn.Conv2d(inp, inp, 3, stride, pad_mode="pad", padding=1, group=inp, has_bias=False),nn.BatchNorm2d(inp),nn.ReLU(),# pwnn.Conv2d(inp, oup, 1, 1, pad_mode="pad", padding=0, has_bias=False),nn.BatchNorm2d(oup),nn.ReLU(),)class MobileNetV1(nn.Cell):r"""MobileNetV1 model class, based on`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_Args:alpha: scale factor of model width. Default: 1.in_channels: number the channels of the input. Default: 3.num_classes: number of classification classes. Default: 1000."""def __init__(self,alpha: float = 1.,in_channels: int = 3,num_classes: int = 1000) -> None:super().__init__()input_channels = int(32 * alpha)# Setting of depth-wise separable conv# c: number of output channel# s: stride of depth-wise convblock_setting = [# c, s[64, 1],[128, 2],[128, 1],[256, 2],[256, 1],[512, 2],[512, 1],[512, 1],[512, 1],[512, 1],[512, 1],[1024, 2],[1024, 1],]features = [nn.Conv2d(in_channels, input_channels, 3, 2, pad_mode="pad", padding=1, has_bias=False),nn.BatchNorm2d(input_channels),nn.ReLU()]for c, s in block_setting:output_channel = int(c * alpha)features.append(depthwise_separable_conv(input_channels, output_channel, s))input_channels = output_channelself.features = nn.SequentialCell(features)# self.pool = GlobalAvgPooling()self.pool = nn.AdaptiveAvgPool2d(output_size=(1, 1))self.classifier = nn.Dense(input_channels, num_classes)self._initialize_weights()def _initialize_weights(self) -> None:"""Initialize weights for cells."""for _, cell in self.cells_and_names():if isinstance(cell, nn.Conv2d):cell.weight.set_data(init.initializer(init.XavierUniform(),cell.weight.shape,cell.weight.dtype))if isinstance(cell, nn.Dense):cell.weight.set_data(init.initializer(init.TruncatedNormal(),cell.weight.shape,cell.weight.dtype))def forward_features(self, x: Tensor) -> Tensor:x = self.features(x)return xdef forward_head(self, x: Tensor) -> Tensor:squeeze = ops.Squeeze(0)x = squeeze(x)x = self.pool(x)squeeze = ops.Squeeze(2)x = squeeze(x)x = x.transpose()x = self.classifier(x)return xdef construct(self, x: Tensor) -> Tensor:x = self.forward_features(x)x = self.forward_head(x)return xdef mobilenet_v1_100_224(pretrained: bool = False, num_classes: int = 1000, in_channels=3, **kwargs) -> MobileNetV1:"""Get MobileNetV1 model without width scaling.Refer to the base class `models.MobileNetV1` for more details."""model = MobileNetV1(alpha=1.0, in_channels=in_channels, num_classes=num_classes, **kwargs)return modelif __name__ == '__main__':# ms.set_context(device_target='GPU')# ms.set_context(device_target='CPU')ms.set_context(device_target="Ascend")ms.set_context(device_id=0)ms.set_seed(1)ms.set_context(mode=ms.PYNATIVE_MODE)img = Image.open("image.jpg").convert("RGB")# create transformtransform_list = create_transforms(dataset_name="imagenet",is_training=False,)transform_list.pop(0)for transform in transform_list:img = transform(img)img = np.expand_dims(img, axis=0)# create modelnetwork = mobilenet_v1_100_224()for i in range(100):# warmupnetwork(ms.Tensor(img))time_begin = time.time()for i in range(1000):# predictnetwork(ms.Tensor(img))time_total = (time.time() - time_begin) * 1000 / 1000print(f"total time is: {time_total}")# print(network)

2. 示例二

调用 mindcv库中的预训练模型进行测试。

"""MindSpore Inference Script
"""import numpy as np
from PIL import Imageimport mindspore as msfrom mindcv.data import create_transforms
from mindcv.models import create_model
import time# ms.set_context(device_target='CPU')
# ms.set_context(device_target='GPU')ms.set_context(device_target='Ascend')
ms.set_context(device_id=0)
ms.set_context(max_device_memory="3.5GB")def main():ms.set_seed(1)ms.set_context(mode=ms.PYNATIVE_MODE)img = Image.open("image.jpg").convert("RGB")# create transformtransform_list = create_transforms(dataset_name="imagenet",is_training=False,)transform_list.pop(0)for transform in transform_list:img = transform(img)img = np.expand_dims(img, axis=0)# create modelnetwork = create_model(model_name="mobilenet_v1_100",  # mobilenet_v1_100_224pretrained=False,)network.set_train(False)for i in range(100):# warmupnetwork(ms.Tensor(img))time_begin = time.time()for i in range(1000):# predictnetwork(ms.Tensor(img))time_total = (time.time() - time_begin) * 1000 / 1000print(f"total time is: {time_total}")if __name__ == "__main__":main()

五、FAQ

Q:RuntimeError: Get acltdt handle failed

File "/home/HwHiAiUser/miniconda3/envs/mindspore19/lib/python3.9/site-packages/mindspore/nn/cell.py", line 120, in __init__init_pipeline()
RuntimeError: Get acltdt handle failed----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------

mindspore_ascend 1.9.0 测试失败。

Q:Load dynamic library libmindspore_ascend failed, returns

[WARNING] ME(22553:281470681698320,MainProcess):2024-05-22-12:56:02.416.603 [mindspore/run_check/_check_version.py:296] MindSpore version 1.10.0 and Ascend AI software package (Ascend Data Center Solution)version 1.83 does not match, the version of software package expect one of ['1.84'], please reference to the match info on: https://www.mindspore.cn/install
[ERROR] ME(22553,fffeffff5010,python):2024-05-22-12:56:02.812.186 [mindspore/ccsrc/runtime/hardware/device_context_manager.cc:46] LoadDynamicLib] Load dynamic library libmindspore_ascend failed, returns [liboptiling.so: cannot open shared object file: No such file or directory].
Traceback (most recent call last):File "/home/HwHiAiUser/Downloads/mindcv_demo.py", line 11, in <module>import mindspore as msFile "/home/HwHiAiUser/miniconda3/envs/mindspore21/lib/python3.9/site-packages/mindspore/__init__.py", line 18, in <module>from mindspore.run_check import run_checkFile "/home/HwHiAiUser/miniconda3/envs/mindspore21/lib/python3.9/site-packages/mindspore/run_check/__init__.py", line 17, in <module>from ._check_version import check_version_and_env_configFile "/home/HwHiAiUser/miniconda3/envs/mindspore21/lib/python3.9/site-packages/mindspore/run_check/_check_version.py", line 474, in <module>check_version_and_env_config()File "/home/HwHiAiUser/miniconda3/envs/mindspore21/lib/python3.9/site-packages/mindspore/run_check/_check_version.py", line 446, in check_version_and_env_configenv_checker.set_env()File "/home/HwHiAiUser/miniconda3/envs/mindspore21/lib/python3.9/site-packages/mindspore/run_check/_check_version.py", line 357, in set_envraise EnvironmentError(
OSError: No such directory: /usr/local/Ascend/ascend-toolkit/latest/opp/built-in/op_impl/ai_core/tbe, Please check if Ascend AI software package (Ascend Data Center Solution) is installed correctly.

mindspore_ascend 1.10.0 测试失败。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/840693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

依赖的各种java库(工具类) :fastjson,lombok,jedis,druid,mybatis等

lombok 功能&#xff1a; Lombok 是一个实用的Java类库&#xff0c;可以通过简单的注解来简化和消除一些必须有但显得很臃肿的Java代码。 导入包&#xff1a;使用Lombok首先要将其作为依赖添加到项目中&#xff0c;在pom.xml文件中手动添加 <dependency><groupId&g…

提取COCO 数据集的部分类

1.python提取COCO数据集中特定的类 安装pycocotools github地址&#xff1a;https://github.com/philferriere/cocoapi pip install githttps://github.com/philferriere/cocoapi.git#subdirectoryPythonAPI若报错&#xff0c;pip install githttps://github.com/philferriere…

【CTF Web】CTFShow web5 Writeup(SQL注入+PHP+位运算)

web5 1 阿呆被老板狂骂一通&#xff0c;决定改掉自己大意的毛病&#xff0c;痛下杀手&#xff0c;修补漏洞。 解法 注意到&#xff1a; <!-- flag in id 1000 -->拦截很多种字符&#xff0c;连 select 也不给用了。 if(preg_match("/\|\"|or|\||\-|\\\|\/|\…

24款奔驰S450升级原厂后排娱乐系统 主动氛围灯有哪些功能

24款奔驰S400豪华升级原厂主动氛围灯与后排娱乐系统&#xff1a;画蛇添足还是锦上添花&#xff1f; 在当今汽车市场竞争激烈的环境下&#xff0c;汽车制造商们为了满足消费者的多元化需求&#xff0c;不断推出各种升级配置和豪华版本。24款奔驰S400豪华版作为奔驰S级的一款重要…

听说部门来了个00后测试开发,一顿操作给我整麻了

公司新来了个同事&#xff0c;听说大学是学的广告专业&#xff0c;因为喜欢IT行业就找了个培训班&#xff0c;后来在一家小公司实习半年&#xff0c;现在跳槽来我们公司。来了之后把现有项目的性能优化了一遍&#xff0c;服务器缩减一半&#xff0c;性能反而提升4倍&#xff01…

uniapp开发vue3监听右滑返回操作,返回到指定页面

想要在uniapp框架中监听左滑或者右滑手势&#xff0c;需要使用touchstart和touchend两个api&#xff0c;因为没有原生的左右滑监听api&#xff0c;所以我们只能依靠这两个api来获取滑动开始时候的x坐标和滑动结束后的x坐标做比对&#xff0c;右滑的话&#xff0c;结束时候的x坐…

飞速提升中文打字,Master of Typing in Chinese for Mac助你一臂之力

Master of Typing in Chinese for Mac是一款专为Mac用户设计的中文打字练习软件。其主要功能包括帮助用户提高打字速度和准确性&#xff0c;培养盲打技巧&#xff0c;使键盘输入更加高效。 打字速度提升&#xff1a;软件提供多种练习模式&#xff0c;如字母、特殊字符、单词和…

FPGA状态机设计详解

一.什么是状态机&#xff1f; 想象一下你正在玩一个电子游戏&#xff0c;角色有多种状态&#xff0c;比如“行走”、“跳跃”、“攻击”等。每当你按下不同的按键或者满足某些条件时&#xff0c;角色的状态就会改变&#xff0c;并执行与该状态对应的动作。这就是状态机的一个简…

Java 类加载和实例化对象的过程

1. 类加载实例化过程 当我们编写完一个*.java类后。编译器&#xff08;如javac&#xff09;会将其转化为字节码。转化的字节码存储在.class后缀的文件中&#xff08;.class 二进制文件&#xff09;。接下来在类的加载过程中虚拟机JVM利用ClassLoader读取该.class文件将其中的字…

GAW-1000D 微机控制钢绞线拉力试验机

一、整机外观图与示意图 外观示意图 性能说明&#xff1a; GAW-1000D型微机控制电液伺服钢绞线拉力试验机主要用于对预应力钢绞线进行抗拉强度测试。由宽调速范围的电液比例伺服阀与计算机及测控单元所组成伺服控制系统&#xff0c;能精确的控制和测量试验全过程。整机由主机…

Unity3D雨雪粒子特效(Particle System)

系列文章目录 unity工具 文章目录 系列文章目录&#x1f449;前言&#x1f449;一、下雨的特效1-1.首先就是创建一个自带的粒子系统,整几张贴图,设置一下就能实现想要的效果了1-2 接着往下看视频效果 &#x1f449;二、下雪的特效&#x1f449;三、下雪有积雪的效果3-1 先把控…

docxtemplater避坑!!! 前端导出word怎么插入本地图片或base64 有完整示例

用docxtemplater库实现前端通过模板导出word&#xff0c;遇到需求&#xff0c;要插图片并转成word并导出&#xff0c;在图片转换这块遇到了问题&#xff0c;网上查示例大多都跑不通&#xff0c;自己琢磨半天&#xff0c;总算搞明白了。 附上清晰完整示例&#xff0c;供参考。 …

SpringCloudAlibaba:6.2RocketMQ的普通消息的使用

简介 普通消息也叫并发消息&#xff0c;是发送效率最高&#xff0c;使用最多的一种 依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSch…

【强化学习的数学原理-赵世钰】课程笔记(三)贝尔曼最优公式

目录 学习引用内容梗概1. 第三章主要有两个内容2. 第二章大纲 二.激励性实例&#xff08;Motivating examples&#xff09;三.最优策略&#xff08;optimal policy&#xff09;的定义四.贝尔曼最优公式&#xff08;BOE&#xff09;&#xff1a;简介五.贝尔曼最优公式&#xff0…

专为汽车内容打造的智能剪辑解决方案

汽车内容创作已成为越来越多车主和汽车爱好者热衷的活动。然而&#xff0c;如何高效、便捷地将行车途中的精彩瞬间转化为高质量的视频作品&#xff0c;一直是困扰着广大用户的一大难题。美摄科技凭借其深厚的视频处理技术和智能分析能力&#xff0c;推出了专为汽车内容记录而生…

C语言数据结构栈的概念及结构、栈的实现、栈的初始化、销毁栈、入栈、出栈、检查是否为空、获取栈顶元素、获取有效元素个数等的介绍

文章目录 前言栈的概念及结构栈的实现一、 栈结构创建二、 初始化结构三、销毁栈四、入栈五、出栈六、检查是否为空七、获取栈顶元素八、获取有效元素的个数九、测试 1十、测试 2总结 前言 C语言数据结构栈的概念及结构、栈的实现、栈的初始化、销毁栈、入栈、出栈、检查是否为…

意外发现openGauss兼容Oracle的几个条件表达式

意外发现openGauss兼容Oracle的几个条件表达式 最近工作中发现openGauss在兼容oracle模式下&#xff0c;可以兼容常用的两个表达式&#xff0c;因此就随手测试了一下。 查看数据库版本 [ommopenGauss ~]$ gsql -r gsql ((openGauss 6.0.0-RC1 build ed7f8e37) compiled at 2…

数据结构----堆的实现(附代码)

当大家看了鄙人的上一篇博客栈后&#xff0c;稍微猜一下应该知道鄙人下一篇想写的博客就是堆了吧。毕竟堆栈在C语言中常常是一起出现的。那么堆是什么&#xff0c;是如何实现的嘞。接下来我就带大家去尝试实现一下堆。 堆的含义 首先我们要写出一个堆&#xff0c;那么我们就需…

kubernetes之prometheus kube-controller-manager。 scheduler报错问题

项目场景&#xff1a; prometheus scheduler及kube-controller-manager监控报错 问题描述 kubeadm搭建完kube-prometheus 会有这个报错 原因分析&#xff1a; rootmaster2:~# kubectl describe servicemonitor -n kube-system kube-controller-manager通过以上图片我们发现 k…

php TP8 阿里云短信服务SDKV 2.0

安装&#xff1a;composer require alibabacloud/dysmsapi-20170525 2.0.24 官方文档&#xff1a;短信服务_SDK中心-阿里云OpenAPI开发者门户 (aliyun.com) 特别注意&#xff1a;传入参数获得值形式 正确&#xff1a; $PhoneNumbers $postData[PhoneNumbers];$signName $po…