StarRocks 社区:从初生到两周年的进化之路

2021 年 9 月 8 日,StarRocks 开源社区诞生。从第一天开始,我们怀揣着“打造世界一流的数据分析产品”的梦想,踏上了星辰大海的征途。 两年间,StarRocks 在 GitHub 上收获了 5.4K Stars,产品共迭代发布了 90 余个版本,288 家市值超过 10 亿美元的头部用户在生产环境中上线运行。“不止步于极速”,StarRocks 更是在短短一年内完成了从全场景 OLAP 分析进化到云原生湖仓分析的进化。

StarRocks 突飞猛进的发展都要得力于社区用户的使用反馈和开发者们不断地帮 StarRocks 添砖加瓦,使其生态体系更加完善。在过去一年内,StarRocks 发布了 v2.5、v3.0、v3.1 三个重大的里程碑版本,其中存算分离、湖仓分析、物化视图等重量级特性, 为极速统一湖仓分析新范式的落地奠定了坚实基础。 alt

进化,永不止步

从诞生之初,StarRocks 就不断在探索关于“极速统一”之道。全面向量化引擎、CBO 查询优化器、实时更新数据模型、Pipeline 执行引擎相继发布,将 OLAP 分析性能提升到了新的高度,也引领了当前大数据分析的发展趋势。 随着各项重要功能历经 2 年、近 300 家各行业头部用户在生产环境中的打磨与完善,StarRocks 完成从 OLAP 到云原生湖仓的快速进化,通过湖仓一体让企业能基于一份数据,满足 BI 报表、多维分析、Ad-hoc 查询、实时分析等不同场景的数据分析需求, StarRocks 往 "One data,all analytics" 的目标不断前行。

湖仓一体化极速查询引擎

Presto/Trino/Impala 一直以来都是行业最好的数据湖(Hive/Hudi/Iceberg/Deltalake 等)查询引擎。但是其性能无法和将数据导入到 ClickHouse 或是 StarRocks 此类极速 OLAP 数据库/数仓相媲美,用户通常会组合使用,运维和使用都会比较复杂,StarRocks 期望彻底改变这种“组合”模式,推出更一体化的方案。StarRocks 的湖仓一体化极速查询引擎的理念是可以同时极速查询数据湖数据和 StarRocks 本地数据。从 StarRocks 2.0 到 StarRocks 3.0 版本, 经过一年半的时间和 7 个大版本的持续打磨,StarRocks 终于发布了业内第一个成熟完善的湖仓一体化极速查询引擎,让数据湖查询和本地数据查询基本持平,并且数据湖查询达到了 Presto/Trino/Impala 等系统的 3-6 倍以上的性能水平。

基于物化视图(MV)的轻量化数据建模

当前数据工程师进行数据建模时,需要通过预先构建大量 ETL 任务来生成 ODS/DWD/DWS/ADS 数据表。这种数据建模方法比较重,周期长,而且会存在很多无用 ETL。StarRocks 基于 MV 的轻量化数据建模方法提供了全新模式,将逻辑建模与物理建模分离:

  1. 无需预先大量 ETL,只需要用 view 来建立各层数据模型,快速交付 view 给业务查询使用
  2. 在业务查询使用中,随需创建多表/单表 MV 实现透明查询加速

业内 Clickhouse、Doris、Snowflake 等打造了比较好的单表 MV,缺乏完善的多表 MV 支持,不足以支持轻量级数据建模方法的落地。StarRocks 在 2.4 版本发布了多表 MV,之后经过 12 个月的时间和三个版本—— StarRocks 2.5、 StarRocks 3.0 和 StarRocks 3.1 版本的打磨,已经成为业内第一个可以同时支持复杂查询、数据湖外表和异步构建的多表 MV,可以很好的支持轻量化建模方法落地,成为用户针对数据建模和 ETL 进行降本增效的大杀器。

此外,物化视图也成为 StarRocks 3.0 的核心功能,物化视图通过声明式的方式降低了传统 ETL 中 Transform 的复杂度,通过外表物化视图可以无缝连接湖仓,通过查询改写可以透明加速,通过 spill 和分区增量刷新可以进行稳定的物化视图构建和细粒度的物化视图刷新策略。帮助用户的湖仓建模更容易。

极简存算分离架构

Snowflake 打造出了全球最好的存算分离架构,让很多云服务用户受益匪浅。但是其架构组件复杂,无法简单部署到用户的各类私有化环境。StarRocks 在存算分离上的创新初心是打破这种限制,让任何社区用户都可以将存算分离架构轻松部署到各类私有环境,获取更多降本增效的收益。StarRocks 3.0 版本发布的全新极简存算分离架构,基于原创的云原生操作系统 StarOS,整个新架构只有 FE 和 CN 两个模块,无需任何外部组件依赖,部署运维和非存算分离版本一样简单,性能一样出色。用户可以随时随地部署使用 StarRocks 存算分离架构,实现降本增效。

更加引人注目的是,3.0 版本的存算分离架构不仅学习了 Snowflake 的优点,通过内置的 StarOS,StarRocks 实现了完全无需外部组件的部署,大大简化了用户的操作。让用户在各种云上云下的环境都可以通过存算分离架构来接口存储介质,提升更好的弹性能力,实现多 AZ 甚至多云的高可用能力。大量用户的实践也证明了 StarRocks 存算分离架构已经走向成熟,将逐渐变成 StarRocks 的默认架构。

产品能力进化时间线

alt

一文了解 StarRocks 物化视图、湖仓分析和存算分离: 重新定义物化视图,你必须拥有的极速湖仓神器! 当打造一款极速湖分析产品时,我们在想些什么 兼顾降本与增效,我们对存算分离的设计与思考

进化,不止代码

创建一个健康的开源项目需要整个社区的共同协作,在开源生态系统中,每个参与者都有机会塑造和改进软件,用户可以识别所需功能并贡献代码或用户案例。只有当整个社区和相关社区积极参与时,一个开源项目才能成功发展为一个繁荣的生态系统,这包括代码贡献者、用户、文档编写者、软件和平台供应商以及集成者等各方。

StarRocks 社区始终相信开放协作的力量,信奉 “Code is power. Community is strength. And Openness is everything. ”。代码是改变世界的力量,社区给了我们无限的可能,而这一切都只有通过开放才能实现。StarRocks 社区的价值观具体体现在:

  • 对极速统一的云原生湖仓一体技术的持续探索:用户能更快、更低成本且更简单地在海量数据中挖掘数据的价值,助力业务成功。

  • 与用户共同成长,彼此成就:建立产品文档、新手教程、产品特性解析、FAQ 、最佳实践和丰富的用户案例知识库,并且通过 StarRocks 城市行、开源集市、线上线下会议和微信/Slack/GitHub 等渠道与用户零距离交流。 alt

  • 开放生态,无缝衔接上下游组件:2022 年底,StarRocks 项目正式捐献给 Linux 基金会,更加中立、开放;并与开放的数据生态产品,如 Apache Flink、Apache SeaTunnel、Apache Paimon、Apache Hudi、Apache Icerberg 等社区共建现代数据栈。 alt

蓬勃发展的用户社区

StarRocks 发展至今已有超过 288 家估值超过 10 亿美元的行业头部用户。这些用户遍布各行业,许多用户也在使用 StarRocks 后积极向社区分享了使用场景和实践经验。以下是一些具有代表性的用户案例:

互联网:芒果 TV、 滴滴、万物新生、 贝壳、同程旅行、得物、小红书、携程、美团餐饮 SaaS、360、微信 物流:顺丰、跨越速运、京东物流、达达 金融:中信建投、中欧财富 、众安保险、中原银行、信也科技 游戏:波克城市、37 手游、腾讯游戏、游族网络 汽车: 理想汽车、 蔚来汽车、、吉利汽车、首汽约车、汽车之家 制造/零售:大润发、华润万家、TCL、华米科技、百草味

完整的用户案例合集请见 StarRocks 公众号“StarRocks 用户案例合集” 和 StarRocks B 站!

深度参与社区共建的伙伴

StarRocks 各个代码仓库下已有超过 300 名贡献者,其中有许多人贡献了文档、函数、connector、周边生态等功能。我们由衷感谢每一位为 StarRocks 贡献力量的朋友们。特别要感谢以下深度参与社区的伙伴们,他们为 StarRocks 提供了备受用户欢迎的重要特性。 alt

最后,感谢每一位为 StarRocks 添砖加瓦的小伙伴们:https://github.com/StarRocks/starrocks/graphs/contributors

总结与展望

过去的一年对于 StarRocks 来说是至关重要的一年,我们在产品、用户规模和社区治理模式方面不断进化,取得了飞跃式的成长。

  • 产品:从原本的 OLAP 分析引擎到现在的湖仓一体,再从存算一体到存算分离,StarRocks 已发展成为极速统一云原生湖仓分析的新范式
  • 用户规模:经过短短一年的时间,我们从千人规模的社区成长为超过万人的社区,拥有来自世界各地的众多知名用户积极参与并支持 StarRocks
  • 社区治理:StarRocks 的社区治理也越来越开放,更多开发者能通过不同的兴趣小组(SIG)参与研发工作 ,专家们能加入技术指导委员会(TSC, Technical Steering Committee)参与 StarRocks Roadmap 的制定和培养社区优秀人才

未来, StarRocks 社区也将保持着合作、开放、共赢的信念,与用户们一同探索新一代的云原生湖仓,共同打造极速统一湖仓分析的新范式!让我们期待更加精彩的下一周年!

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/83873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go语言 反向代理

实现简单的http反向代理 还没有加入负载均衡 新手推荐 下游服务器代码 package mainimport ("fmt""io""log""net/http""os""os/signal""syscall""time" )type RealServer struct {Addr str…

嵌入式:驱动开发 Day9

作业:通过platform总线驱动实现 a.应用程序通过阻塞的io模型来读取number变量的值 b.number是内核驱动中的一个变量 c.number的值随着按键按下而改变(按键中断) 例如number0 按下按键number1 ,再次按下按键number0 d.在按下按键的时候需要同时…

Python 公里与海里换算

""" 公里与海里换算知识点:1、换算公式:海里 公里 / 1.8522、input()、print()函数3、变量类型转换,整形int与字符串str转换,可以用type()函数验证4、字符串拼接,例如:123 456 1234565、…

Vue3快速上手

1.Vue3简介 2020年9月18日,Vue.js发布3.0版本,代号:One Piece(海贼王)耗时2年多、2600次提交、30个RFC、600次PR、99位贡献者github上的tags地址:Release v3.0.0 One Piece vuejs/core GitHub 2.Vue3带…

搜款网VVIC根据ID取商品详情 API 关键词搜索商品列表

搜款网是一家服装批发平台,提供多个品牌和供应商的服装、鞋子、箱包等商品供采购者选择,为了获取商品详情,您需要使用搜款网的API接口。 建议您联系搜款网的客服或开发者,以获取更多关于API接口的信息,包括使用方法、…

数据标准化

1、均值方差标准化(Z-Score标准化) 计算过程: 对每个属性/每列分别进行一下操作,将数据按属性/按列减去其均值,并除以其方差,最终使每个属性/每列的所有数据都聚集在均值为0,方差为1附近。 公式:(x-mean(x…

M-LAG简介

定义 M-LAG(Multichassis Link Aggregation Group)即跨设备链路聚合组,是一种实现跨设备链路聚合的机制,将一台设备与另外两台设备进行跨设备链路聚合,从而把链路可靠性从单板级提高到了设备级,组成双活系…

Linux CentOS7 wc命令

wc命令的功能为统计指定文件中的字节数、字数、行数, 并将统计结果显示输出。 录入 man wc 可以查看相关信息 基本语法: wc [选项] 文件… 说明:该命令统计给定文件中的字节数、字数、行数。如果没有给出文件名,则从标准输入读取。wc同时也…

C语言进阶第三课-----------指针的进阶----------后续版

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…

docker总结

Docker实用篇 0.学习目标 1.初识Docker 1.1.什么是Docker 微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署…

ddtrace 系列篇之 dd-trace-java 项目编译

dd-trace-java 是 Datadog 开源的 java APM 框架,本文主要讲解如何编译 dd-trace-java 项目。 环境准备 JDK 编译环境(三个都要:jdk8\jdk11\jdk17) Gradle 8 Maven 3.9 (需要 15G 以上的存储空间存放依赖) Git >2 (低于会出现一想不到的异常&#xf…

大语言模型之十-Byte Pair Encoding

Tokenizer 诸如GPT-3/4以及LlaMA/LlaMA2大语言模型都采用了token的作为模型的输入输出,其输入是文本,然后将文本转为token(正整数),然后从一串token(对应于文本)预测下一个token。 进入OpenAI官…

Learn Prompt-Prompt 高级技巧:MetaGPT

MetaGPT是一项引起广泛关注的研究成果,它引入了一个将人工工作流程与多智能体协作无缝集成的框架。通过将标准化操作(SOP) 程序编码为提示,MetaGPT确保解决问题时采用结构化方法,从而减少出错的可能性。 &#x1f389…

【深度学习】ONNX模型快速部署【入门】

【深度学习】ONNX模型快速部署【入门】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】ONNX模型快速部署【入门】前言搭建打包环境打包可执行文件总结 前言 之前的内容已经尽可能简单、详细的介绍CPU【Pytorch2ONNX】和GPU【Pyto…

蓝桥杯打卡Day12

文章目录 接龙数列冶炼金属 一、接龙数列OJ链接 本题思路:本题是一道经典的dp问题,设第i个数的首位数字是first, 末位数字是last。因为第i个数只可能加到一个以first结尾的接龙数列中使得这个接龙数列长度加1并且结尾数字变成last.所以状态转移方程为d…

设计模式_解释器模式

解释器模式 案例 角色 1 解释器基类 (BaseInterpreter) 2 具体解释器1 2 3... (Interperter 1 2 3 ) 3 内容 (Context) 4 用户 (user) 流程 (上下文) ---- 传…

Redis 面试题——缓存穿透、缓存击穿和缓存雪崩

目录 1.缓存穿透2.缓存击穿3.缓存雪崩4.总结 参考文章: 缓存实战(1)缓存雪崩、缓存击穿和缓存穿透入门简介及解决方案 1.缓存穿透 (1)问题描述:缓存穿透是指在高并发场景下,大量的请求访问一个…

23种设计模式汇总详解

设计原则 中文名称英文名称含义解释单一职责原则Single Responsibility Principle(SRP)任何一个软件模块都应该只对某一类行为者负责一个类只干一件事,实现类要单一开闭原则Open-Close Principle(OCP)软件实体(类、模块、函数等)应该是可以扩…

ChatGpt介绍和国产ChatGpt对比

1.ChatGPT是美国OpenAI研发的聊天机器人程序,2022年11月30日发布。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过理解和学习人类的语言来进行对话。 2.ChatGPT是一种基于自然语言处理的聊天机器人程序。它使用深度学习技术,通过对…

【Linux】常用工具(下)

Linux常用工具 一、Linux 项目自动化构建工具 - make/Makefile1. 依赖关系和依赖方法2. 伪目标3. make/Makefile 具有依赖性的推导能力(语法扩展)4. 编写一个进度条代码(1)缓冲区(2)\n 和 \r(3&…