【ARM】ARM寄存器和异常处理

1.指令的执行过程

(1)一条指令的执行分为三个阶段

         1.取址:     

CPU将PC寄存器中的地址发送给内存,内存将其地址中对应的指令返回

到CPU中的指令寄存器(IR)

        2.译码:     

译码器对IR中的指令进行识别,将指令(机器码)解析成具体的运算    

 

        3.执行:     

控制器控制运算器中对应的运算单元进行运算,运算结果写入寄存器

(2) 每执行一条指令后PC的值会自动增加指向下一条指令

2. ARM处理器概述

 

ARM产品系列
早先经典处理器 包括ARM7、ARM9、ARM11家族
 Cortex-A系列

针对开放式操作系统的高性能处理器    

应用于智能手机、数字电视、智能本等高端运用 

Cortex-R系列

针对实时系统、满足实时性的控制需求    

应于汽车制动系统、动力系统等

Cortex-M系列

为单片机驱动的系统提供了低成本优化方案    

应用于传统的微控制器市场、智能传感器、汽车周边等

3.ARM指令集

(1)指令集: 处理器能识别的指令的集合称为指令集,不同架构的处理器指令集不同,指令集是处理器对开发者提供的接口

(2)大多数ARM处理器都支持两种指令集:

ARM指令集

 所有指令(机器码)都占用32bit存储空间    

代码灵活度高、简化了解码复杂度    

执行ARM指令集时PC值每次自增4

Thumb指令集

所有指令(机器码)都占用16bit存储空间    

代码密度高、节省存储空间    

执行Thumb指令集时PC值每次自增2

4.ARM存储模型

(1)ARM采用32位架构,基本数据类型有以下三种

Byte(字节)8bits
Halfword(半字)16bits
Word(字)32bits

(2)数据存储

Word型数据在内存的起始地址必须是4的整数倍    

Halfword型数据在内存的起始地址必须是2的整数倍    

注:即数据本身是多少位在内存存储时就应该多少位对齐,且ARM一般使用小端对齐

5. ARM工作模式

(1)ARM有8个基本的工作模式

User    非特权模式,一般在执行上层的应用程序时ARM处于该模式
FIQ 当一个高优先级中断产生后ARM将进入这种模式
IRQ当一个低优先级中断产生后ARM将进入这种模式
SVC当复位或执行软中断指令后ARM将进入这种模式
Abort 当产生存取异常时ARM将进入这种模式
Undef当执行未定义的指令时ARM将进入这种模式
System    使用和User模式相同寄存器集的特权模式
Monitor    为了安全而扩展出的用于执行安全监控代码的模式

(2)工作模式的理解

         不同模式拥有不同权限  

        不同模式执行不同代码  

        不同模式完成不同的功能

(3)ARM工作模式分类

按照权限              User为非特权模式(权限较低),其余模式均为特权模式(权限较高)
按照状态 FIQ、IRQ、SVC、Abort、Undef属于异常模式,即当处理器遇到异常后 会进入对应的模式

6.ARM寄存器组织

(1)寄存器

 概念寄存器是处理器内部的存储器,没有地址
作用一般用于暂时存放参与运算的数据和运算结果
分类包括通用寄存器、专用寄存器、控制寄存器

(2)  ARM寄存器

在某个特定模式下只能使用当前模式下的寄存器,一个模式下特有的寄存器其他模式下不可使用

专用寄存器
R15(PC,Program Counter) 程序计数器,用于存储当前取址指令的地址
R14(LR,Link Register)

链接寄存器,一般有以下两种用途:    

> 执行跳转指令(BL/BLX)时,LR会自动保存跳转指令下一条指令的地址,程序需要返回时将LR的值复制到PC即可实现    

> 产生异常时,对应异常模式下的LR会自动保存被异常打断的指令的下一条指令的地址,异常处理结束后将LR的值复制到PC可实现程序返回

R13(SP,Stack Pointer)栈指针,用于存储当前模式下的栈顶地址
CPSR(Current Program Status Register)当前程序状态寄存器 

 

(3)CPSR寄存器

 CPSR寄存器分为四个域,[31:24]为条件域用F表示、[23:16]为状态域用S表示、[15:8]为预留域用X表示、[8:0]为控制域用C表示

 

Bit[4:0][10000]User    [10001]FIQ     [10010]IRQ     [10011]SVC     [10111]Abort   [11011]Undef   [11111]System  [10110]Monitor
Bit[5] [0]ARM状态     [1]Thumb状态
 Bit[6] [0]开启FIQ     [1]禁止FIQ
 Bit[7][0]开启IRQ     [1]禁止IRQ
Bit[28] 

> 当运算器中进行加法运算且产生符号位进位时该位自动置1,否则为0    

> 当运算器中进行减法运算且产生符号位借位时该位自动置0,否则为1

Bit[29]    > 当运算器中进行加法运算且产生进位时该位自动置1,否则为0     > 当运算器中进行减法运算且产生借位时该位自动置0,否则为1
Bit[30]    当运算器中产生了0的结果该位自动置1,否则为0
Bit[31]     当运算器中产生了负数的结果该位自动置1,否则为0

 

 

 

 

 

 

 

 

 

 

 

 

7. ARM异常处理

(1)异常

处理器在正常执行程序的过程中可能会遇到一些不正常的事件发生,这时处理器就要将当前的程序暂停下来转而去处理这个异常的事件,异常事件处理完成之后再返回到被异常打断的点继续执行程序

(2)异常源

 导致异常产生的事件称为异常源

ARM异常源
FIQ    快速中断请求引脚有效    
IRQ    外部中断请求引脚有效
 Reset复位电平有效
 Software Interrupt执行swi指令
Data Abort    数据终止
Prefetch Abort指令预取终止
 Undefined Instruction遇到不能处理的指令

(3)ARM异常模式

异常模式:在ARM的基本工作模式中有5个属于异常模式,即ARM遇到异常后会切换成对应的异常模式

(4) ARM异常响应

ARM产生异常后的动作(自动完成)

1.拷贝CPSR中的内容到对应异常模式下的SPSR_<mode>    

2.修改CPSR的值   

         2.1.修改中断禁止位禁止相应的中断   

         2.2.修改模式位进入相应的异常模式    

         2.3.修改状态位进入ARM状态    

3.保存返回地址到对应异常模式下的LR_<mode>    

4.设置PC为相应的异常向量(异常向量表对应的地址)

异常向量表

 > 异常向量表的本质是内存中的一段代码    

> 表中为每个异常源分配了四个字节的存储空间    

> 遇到异常后处理器自动将PC修改为对应的地址    

> 因为异常向量表空间有限一般我们不会再这里写异常处理程序,而是在对应的位置写一条跳       转指令使其跳转到指定的异常处理程序的入口    

注:ARM的异常向量表的基地址默认在0x00地址但可以通过配置协处理器来修改其地址

ARM异常返回的动作(自己编写)

    1.将SPSR_<mode>的值复制给CPSR, 使处理器恢复之前的状态                     

   2.将LR_<mode>的值复制给PC ,使程序跳转回被打断的地址继续执行 

(5)IRQ异常举例

(6) 异常优先级

(7) FIQ和IRQ

 FIQ的响应速度比IRQ快    

        1. FIQ在异常向量表位于最末 ,可直接把异常处理写在异常向量表之后,省去跳转    

        2. FIQ模式有5个私有寄存器(R8-R12) ,执行中断处理程序前无需压栈保存寄存器,可直接处理中断    

        3. FIQ的优先级高于IRQ     

                3.1 两个中断同时发生时先响应FIQ     

                3.2 FIQ可以打断RIQ,但RIQ不能打断FIQ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/832125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

神经网络中的算法优化(皮毛讲解)

抛砖引玉 在深度学习中&#xff0c;优化算法是训练神经网络时至关重要的一部分。 优化算法的目标是最小化&#xff08;或最大化&#xff09;一个损失函数&#xff0c;通常通过调整神经网络的参数来实现。 这个过程可以通过梯度下降法来完成&#xff0c;其中梯度指的是损失函数…

Grafana:云原生时代的数据可视化与监控王者

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Grafana&#xff1a;让数据说话的魔术师》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、Grafana简介 2、Grafana的重要性与影响力 …

全方位了解 Meta Llama 3

本文将为您提供 Llama 3 的全面概览&#xff0c;从其架构、性能到未来的发展方向&#xff0c;让您一文了解这一革命性大语言模型的所有要点。 Meta Llama 发展历程 Llama 1 Llama 是由 Meta(FaceBook) AI 发布的一个开源项目&#xff0c;允许商用&#xff0c;影响力巨大。Lla…

力扣每日一题111:二叉树的最小深度

题目 简单 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;2示例 2&#x…

C语言:文件操作(上)

片头 嗨&#xff01;小伙伴们&#xff0c;今天我们来学习新的知识----文件操作&#xff0c;准备好了吗&#xff1f;我要开始咯! 目录 1. 为什么使用文件&#xff1f; 2. 什么是文件&#xff1f; 3. 二进制文件和文本文件&#xff1f; 4. 文件的打开和关闭 5. 文件顺序读写…

启发式算法解魔方——python

未完待续&#xff0c;填坑ing…… 魔方操作的表示——辛马斯特标记 辛马斯特标记&#xff08;Singmaster Notation&#xff09;是一种用于描述魔方和类似拼图的转动操作的标记系统。它以大卫辛马斯特&#xff08;David Singmaster&#xff09;的名字命名&#xff0c;辛马斯特…

C 认识指针

目录 一、取地址操作符&#xff08;&&#xff09; 二、解引用操作符&#xff08;*&#xff09; 三、指针变量 1、 指针变量的大小 2、 指针变量类型的意义 2.1 指针的解引用 2.2 指针 - 整数 2.3 调试解决疑惑 认识指针&#xff0c;指针比较害羞内敛&#xff0c;我们…

单调栈-java

本次主要通过数组模拟单调栈来解决问题。 目录 一、单调栈☀ 二、算法思路☀ 1.暴力做法&#x1f319; 2.优化做法&#x1f319; 3.单调递增栈和单调递减栈&#x1f319; 三、代码如下☀ 1.代码如下&#xff08;示例&#xff09;&#xff1a;&#x1f319; 2.读入数据&a…

Ubuntu MATE系统下WPS显示错位

系统&#xff1a;Ubuntu MATE 22.04和24.04&#xff0c;在显示器设置200%放大的情况下&#xff0c;显示错位。 显示器配置&#xff1a; WPS显示错位&#xff1a; 这个问题当前没有找到好的解决方式。 因为4K显示屏设置4K分辨率&#xff0c;图标&#xff0c;字体太小&#xff…

prometheus搭建

1.prometheus下载 下载地址:Download | Prometheus 请下载LTS稳定版本 本次prometheus搭建使用prometheus-2.37.1.linux-amd64.tar.gz版本 2.上传prometheus-2.37.1.linux-amd64.tar.gz至服务器/opt目录 CentOS7.9 使用命令rz -byE上传 3.解压缩prometheus-2.37.1.linux…

【C++之map的应用】

C学习笔记---021 C之map的应用1、map的简单介绍1.1、基本概念1.2、map基本特性 2、map的基本操作2.1、插入元素2.2、访问元素2.3、删除元素2.4、遍历map2.5、检查元素是否存在2.6、获取map的大小2.7、清空map2.8、基本样例 3、map的基础模拟实现4、测试用例4.1、插入和遍历4.2、…

Flutter笔记:Widgets Easier组件库(11)- 使用提示吐丝

Flutter笔记 Widgets Easier组件库&#xff08;11&#xff09;使用提示吐丝 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this …

【多模态】29、OCRBench | 为大型多模态模型提供一个 OCR 任务测评基准

文章目录 一、背景二、实验2.1 测评标准和结果2.1.1 文本识别 Text Recognition2.1.2 场景文本中心的视觉问答 Scene Text-Centric VQA2.1.3 文档导向的视觉问答 Document-Oriented VQA2.1.4 关键信息提取 Key Information Extraction2.1.5 手写数学公式识别 Handwritten Mathe…

Ubuntu安装配置网络

参考 https://blog.csdn.net/qq_59633155/article/details/131252293https://blog.csdn.net/qq_59633155/article/details/131252293 Ubuntu配置网络 1&#xff0c;查看网络是否连接 终端输入 ping baidu.com 如若成功则如下图所示 如未能成功&#xff0c;则继续按下面步骤…

解决HTTP 403 Forbidden错误:禁止访问目录索引问题的解决方法

解决HTTP 403 Forbidden错误&#xff1a;禁止访问目录索引问题的解决方法 过去有人曾对我说&#xff0c;“一个人爱上小溪&#xff0c;是因为没有见过大海。”而如今我终于可以说&#xff0c;“我已见过银河&#xff0c;但我仍只爱你一颗星。” 在Web开发和服务器管理中&#x…

【精品毕设推荐】基于JSP物流信息网的设计与实现

点击免费下载原文及代码、PPT 摘要 本文讲述了基于JSP物流信息网的设计与实现。该系统使用java语言开发&#xff0c;使系统具有更好的平台性和可扩展性。 该系统实现了用户登录、注册、查询快递信息、快递公司注册成为合作伙伴以及系统管理员对信息进行管理等功能。系统的主…

(三)JVM实战——对象的内存布局与执行引擎详解

对象的内存布局 对象的实例化 对象的创建方式 - new的方式 - Class的newInstance():反射的方式 - Construct的newInstance() - clone:实现Cloneable接口,默认浅拷贝 - 使用反序列化&#xff1a;将二进制流转化为内存对象 创建对象的步骤 - 判断对象对应的类是否加载、链接、初…

You don’t have permission.

The document “XXX” could not be saved. You don’t have permission. 1.查看修改了iOS系统库导致的, 根据提示, 进入到"XXX"文件中, 然后commandz回退/取消 2. Xcode 调试遇到的报错&#xff08;持续更新&#xff09;

18_Scala面向对象编程trait

文章目录 trait1.定义trait2.向类中混入特质2.1没有父类2.2有父类 3.动态混入3.1动态混入查询功能到公司业务中 4.父类&#xff0c;子类&#xff0c;特质初始化优先级5.Scala功能执行顺序6.常用API trait –特质的学习需要类比Java中的接口&#xff0c;源码编译之后就是interf…

练习题(2024/5/3)

1对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false提示&#xff1a; 树中…