python 无处不在的二分搜索

        我们知道二分查找算法。二分查找是最容易正确的算法。我提出了一些我在二分搜索中收集的有趣问题。有一些关于二分搜索的请求。我请求您遵守准则:“我真诚地尝试解决问题并确保不存在极端情况”。阅读完每个问题后,最小化浏览器并尝试解决它。 
        问题陈述:给定一个由 N 个不同元素组成的排序数组,使用最少的比较次数在数组中找到一个键。 (您认为二分搜索是在排序数组中搜索键的最佳选择吗?)无需太多理论,这里是典型的二分搜索算法。

# Returns location of key, or -1 if not found
def BinarySearch(A, l, r, key):
    while (l < r):
        m = l + (r - l) // 2
        if A[m] == key: #first comparison
            return m
        if A[m] < key: # second comparison
            l = m + 1
        else:
            r = m - 1
    return -1
""" This code is contributed by Rajat Kumar """ 

        理论上,最坏情况下我们需要进行log N + 1次比较。如果我们观察的话,我们会在每次迭代中使用两次比较,除非最终成功匹配(如果有)。在实践中,比较将是昂贵的操作,它不仅仅是原始类型比较。尽量减少与理论极限的比较更为经济。请参阅下图,了解下一个实现中索引的初始化。 

以下实现使用较少的比较次数。  

# Invariant: A[l] <= key and A[r] > key
# Boundary: |r - l| = 1
# Input: A[l .... r-1]
 
def BinarySearch(A, l, r, key):
    while (r-l > 1):
        m = l+(r-l)//2
        if A[m] <= key:
            l = m
        else:
            r = m
    if A[l] == key:
        return l
    if A[r] == key:
        return r
    return -1
 
 
""" Code is written by Rajat Kumar""" 

        在 while 循环中,我们仅依赖于一次比较。搜索空间收敛到将l和r指向两个不同的连续元素。我们需要再进行一次比较来跟踪搜索状态。您可以查看示例测试用例 http://ideone.com/76bad0。 (C++11 代码)。

        问题陈述:给定一个由 N 个不同整数组成的数组,找到输入“key”的下限值。假设 A = {-1, 2, 3, 5, 6, 8, 9, 10} 且 key = 7,我们应该返回 6 作为结果。我们可以使用上面的优化实现来找到键的下限值。只要不变量成立,我们就不断地将左指针移到最右边。最终左指针指向小于或等于 key 的元素(根据定义下限值)。以下是可能的极端情况, —> 如果数组中的所有元素都小于 key,则左指针移动到最后一个元素。 —> 如果数组中的所有元素都大于 key,则为错误情况。 —> 如果数组中的所有元素都相等且 <= key,则这是我们实现的最坏情况输入。
这是示例: 

# largest value <= key
# Invariant: A[l] <= key and A[r] > key
# Boundary: |r - l| = 1
# Input: A[l .... r-1]
# Precondition: A[l] <= key <= A[r]
def Floor(A,l,r,key):
    while (r-l>1):
        m=l+(r-l)//2
        if A[m]<=key:
            l=m
        else:
            r=m
    return A[l]
# Initial call
def Floor(A,size,key):
    # Add error checking if key < A[0]
    if key<A[0]:
        return -1
    # Observe boundaries
    return Floor(A,0,size,key)
 
"""Code is written by Rajat Kumar""" 

您可以看到一些测试用例 http://ideone.com/z0Kx4a。 

        问题陈述:给定一个可能有重复元素的排序数组。查找log N时间内输入“key”出现的次数。这里的想法是使用二分搜索查找数组中最左边和最右边出现的键。我们可以修改底函数来跟踪最右边的出现和最左边的出现。 
这是示例:  

# Input: Indices Range [l ... r)
# Invariant: A[l] <= key and A[r] > key
 
def GetRightPosition(A,l,r,key):
    while r-l>1:
        m=l+(r-l)//2
        if A[m]<=key:
            l=m
        else:
            r=m
    return l
# Input: Indices Range (l ... r]
# Invariant: A[r] >= key and A[l] > key
def GetLeftPosition(A,l,r,key):
    while r-l>1:
        m=l+(r-l)//2
        if A[m]>=key:
            r=m
        else:
            l=m
    return r
def countOccurrences(A,size,key):
    #Observe boundary conditions
    left=GetLeftPosition(A,-1,size-1,key)
    right=GetRightPosition(A,0,size,key)
    # What if the element doesn't exists in the array?
    # The checks helps to trace that element exists
 
    if A[left]==key and key==A[right]:
        return right-left+1
    return 0
"""Code is written by Rajat Kumar"""

示例代码 zn6R6a - Online C++0x Compiler & Debugging Tool - Ideone.com。   

        问题陈述: 给定一个由不同元素组成的排序数组,并且该数组在未知位置旋转。找到数组中的最小元素。我们可以在下图中看到示例输入数组的图示。

        我们收敛搜索空间直到l和r 指向单个元素。如果中间位置落在第一个脉冲中,则不满足条件 A[m] < A[r],我们将搜索空间收敛到 A[m+1 … r]。如果中间位置落在第二个脉冲中,则满足条件 A[m] < A[r],我们将搜索空间收敛到 A[1 … m]。在每次迭代中,我们都会检查搜索空间大小,如果它是 1,我们就完成了。
        下面给出的是算法的实现。 你能想出不同的实施方案吗?  

def BinarySearchIndexOfMinimumRotatedArray(A, l, r):
    # extreme condition, size zero or size two
    # Precondition: A[l] > A[r]
    if A[l] >= A[r]:
        return l
    while (l <= r):
        # Termination condition (l will eventually falls on r, and r always
        # point minimum possible value)
        if l == r:
            return l
        m = l+(r-l)//2  # 'm' can fall in first pulse,
        # second pulse or exactly in the middle
        if A[m] < A[r]:
             # min can't be in the range
             # (m < i <= r), we can exclude A[m+1 ... r]
            r = m
        else:
             # min must be in the range (m < i <= r),
             # we must search in A[m+1 ... r]
 
            l = m+1
    return -1
 
 
def BinarySearchIndexOfMinimumRotatedArray(A, size):
    return BinarySearchIndexOfMinimumRotatedArray(A, 0, size-1)
 
 
"""Code is written by Rajat Kumar"""

 请参阅示例测试用例 KbwDrk - Online C++0x Compiler & Debugging Tool - Ideone.com。 

练习: 
1. 称为signum(x, y)的函数 定义为,

Signum(x, y) = -1 如果 x < y 
             = 0 如果 x = y 
             = 1 如果 x > y

您是否遇到过比较行为类似于符号函数的指令集?它能让二分搜索的第一个实现变得最优吗? 

2. 实现floor函数的ceil函数复制品。 

3. 与你的朋友讨论“二分查找是否是最优的(比较次数最少)?为什么不在排序数组上进行三元搜索或插值搜索?与二分搜索相比,您什么时候更喜欢三元搜索或插值搜索?” 

4. 画出二分搜索的树表示(相信我,这对你理解二分搜索的内部原理有很大帮助)。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/825428.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【个人博客搭建】(8)全局异常处理

1、net 8 webapi 全局异常处理: 在 .NET 8 WebAPI 中&#xff0c;全局异常处理可以通过实现**IExceptionHandler接口或使用IAsyncExceptionFilter接口来完成**。 首先&#xff0c;关于IExceptionHandler接口&#xff0c;它是ASP.NET Core中用于全局异常处理的新抽象。这个接口有…

【C++】priority_queue(优先级队列介绍、仿函数控制大堆小堆、模拟实现)

一、优先级队列 1.1介绍 优先级队列&#xff08;Priority Queue&#xff09;是一种特殊的数据结构&#xff0c;其并不满足队列先进先出的原则&#xff0c;它结合了队列和堆的特点&#xff0c;允许我们在其中插入元素&#xff0c;并且能够保证任何时候提取出的元素都是当前队列…

不同性能压测工具对比

阿里云PTS 性能测试PTS&#xff08;Performance Testing Service&#xff09;是阿里云一款商业化的性能测试工具。支持按需发起压测任务&#xff0c;可支持百万并发、千万TPS流量发起能力&#xff0c;100%兼容JMeter。PTS支持的场景编排、API调试、流量定制、流量录制等功能&am…

【论文解读系列】从RNN/CNN到大模型全解析

论文&#xff1a;A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond 地址&#xff1a;GitHub&#xff1a;https://github.com/QiushiSun/NCISurvey 文章目录 一、代码模型的发展 1.神经语言建模&#xff08;Neural Language Modeling&#xff09;时代 …

初识 React:安装和初步使用指南

文章目录 前言一、React 是什么&#xff1f;1.组件化开发2.虚拟 DOM3.单向数据流4.生态系统丰富 二、安装1.准备工作2.下载react 三、探索 React 应用总结 前言 在当今的 Web 开发领域&#xff0c;React 已经成为了一个备受推崇的技术。它的组件化、灵活性和高效性使得它成为了…

bugku-web-都过滤了

别说&#xff0c;页面还挺帅&#xff0c;这里所有链接点都是假的 账号密码错误的弹窗 这里几乎没有其他线索&#xff0c;现在能想到的有两种&#xff0c;SQL注入和爆破 开始爆破 得到账号为admin 得到最终密码bugkuctf 进入系统内部 发现这里过滤空格 可以用{}来代替空格作用…

K8s: 关于Kubernetes中的Pod的创建,实现原理,Job调度pod以及pod网络

Pod 概述 Pod 是最小部署的单元&#xff0c;Pod里面是由一个或多个容器组成&#xff0c;也就是一组容器的集合一个pod中的容器是共享网络命名空间&#xff0c;每个Pod包含一个或多个紧密相关的用户业务容器Pod 是 k8s 系统中可以创建和管理的最小单元是资源对象模型中由用户创…

Python介绍(未完)

文章目录 Python 背景知识Python 是谁创造的&#xff1f;Python 可以用来干什么&#xff1f;Python 的优缺点 搭建 Python 环境安装 Python搭建 PyCharm 环境新工具到手&#xff0c;赶紧试试中文设置第一个Python程序 Python基础语法基础语法&#xff08;1&#xff09;常量和表…

python复制文件夹内容

参考博客 https://blog.csdn.net/itfans123/article/details/133710731 案例1 import os import shutildef copy_folder(source_folder, destination_folder):# 创建目标文件夹os.makedirs(destination_folder, exist_okTrue)# 遍历源文件夹中的所有文件和文件夹for item in …

[docker] 核心知识 - 概念和运行

[docker] 核心知识 - 概念和运行 之前 docker 学了个开头就去搞项目去了&#xff0c;不过项目也开展了好久了&#xff0c;前端差不多吃透了&#xff0c;有些新功能需要用 docker 和 k8s……是时候重新学习一下了。 这一部分简单的过一下概念和讲一下怎么运行 docker 镜像和启…

论文复现《SplaTAM: Splat, Track Map 3D Gaussians for Dense RGB-D SLAM》

前言 SplaTAM算法是首个开源的基于RGB-D数据&#xff0c;生成高质量密集3D重建的SLAM技术。 通过结合3DGS技术和SLAM框架&#xff0c;在保持高效性的同时&#xff0c;提供精确的相机定位和场景重建。 代码仓库&#xff1a;spla-tam/SplaTAM: SplaTAM: Splat, Track & Map 3…

从零开始学习Linux(3)----权限

1.Linux权限的概念 Linux用户&#xff1a;1.root&#xff0c;超级管理员 2.非root&#xff0c;XXX&#xff0c;普通用户 命令&#xff1a;su[用户名] 功能&#xff1a;切换用户。 su -&#xff1a;是指以root的身份重新登录一次。 普通用户切换root需要输入密码&#xff0c;…

java算法day56 | 动态规划part15 ● 392.判断子序列 ● 115.不同的子序列

392.判断子序列 动规五部曲&#xff1a; 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j] 表示以下标i-1为结尾的字符串s&#xff0c;和以下标j-1为结尾的字符串t&#xff0c;相同子序列的长度为dp[i][j]。确定递推公式 在确定递推公式的时候&#xff0c;…

优先编码器电路①

描述 下表是某优先编码器的真值表。 ①请用Verilog实现此优先编码器 输入描述 ①输入描述&#xff1a; input [8:0] I_n 输出描述 ①输出描述&#xff1a; output reg [3:0] Y_n 解题分析 本优先编码器&#xff0c;可采用case语句实现&#xff…

嵌入式操作系统FreeRTOS(队列管理)

1.队列管理 &#xff08;1&#xff09;数据存储 队列可以保存有限个具有确定长度的数据单元。队列可以保存的最大单元数目被称为队列的“深度”。在队列创建时需要设定其深度和每个单元的大小。通常情况下&#xff0c;队列被作为FIFO (先进先出)使用&#xff0c;即数据由队列尾…

解决Git 不相关的分支合并

可以直接调到解决方案,接下来是原因分析和每步的解决方式 问题原因: 我之前在自己本机创建了一个初始化了Git仓库,后来有在另一个电脑初始化仓库,并没有clone自己在本机Git远程仓库地址,导致Git历史版本不相关 错误信息 From https://gitee.com/to-uphold-justice-for-other…

点击广告就能日赚收益1000+?开发一款看广告赚收益的APP靠谱吗?

APP对接广告变现是开发者获得收益的重要方式之一&#xff0c;对一些体量较小的APP来说&#xff0c;甚至是唯一的收益来源。开发者是否可以单独开发一款全是广告的APP&#xff0c;拿出一部分的广告收益给点击者&#xff0c;类似在快手极速版里看广告获得金币一个原理&#xff0c…

【Axure教程】制作书本翻页效果

翻书效果是一种模拟真实书本翻页动作的视觉效果&#xff0c;常用于网页设计和应用程序中&#xff0c;以增强用户体验和交互性。这种效果通常通过动画和过渡效果来模拟书页的翻转&#xff0c;使用户感觉像在真实的书本中翻页一样。 所以今天作者就教大家怎么在Axure里用中继器制…

(CVPR,2024)CAT-Seg:基于成本聚合的开放词汇语义分割

文章目录 摘要引言方法计算成本与嵌入空间成本聚合类别成本聚合CAT-Seg框架 实验 摘要 开放词汇的语义分割面临着根据各种文本描述对图像中的每个像素进行标记的挑战。在这项工作中&#xff0c;我们引入了一种新颖的基于成本的方法&#xff0c;以适应视觉语言基础模型&#xf…

CSS显示模式

目录 CSS显示模式简介 CSS显示模式的分类 块元素 行元素 行内块元素 元素显示模式的转换 使块内文字垂直居中的方法 设计简单小米侧边栏&#xff08;实践&#xff09; CSS显示模式简介 元素显示模式就是元素&#xff08;标签&#xff09;以什么方式进行显示&#xff0…