392.判断子序列
动规五部曲:
- 确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。 - 确定递推公式
在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
if (s[i - 1] == t[j - 1])
t中找到了一个字符在s中也出现了
if (s[i - 1] != t[j - 1])
相当于t要删除元素,继续匹配 - dp数组如何初始化
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
4.确定遍历顺序
同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右 - 模拟递归
class Solution {public boolean isSubsequence(String s, String t) {int[][] dp=new int[s.length()+1][t.length()+1];for(int i=1;i<=s.length();i++){for(int j=1;j<=t.length();j++){if(s.charAt(i-1)==t.charAt(j-1)){dp[i][j]=dp[i-1][j-1]+1;}else{dp[i][j]=dp[i][j-1];}}}return dp[s.length()][t.length()]==s.length();}
}
115.不同的子序列
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。 - 确定递推公式
这一类问题,基本是要分析两种情况
-s[i - 1] 与 t[j - 1]相等
s[i - 1] 与 t[j - 1] 不相等
- 当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; - 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
- dp数组如何初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。
dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
- 确定遍历顺序
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。 - 举例推导dp数组
class Solution {public int numDistinct(String s, String t) {int[][] dp=new int[s.length()+1][t.length()+1];for(int i=0;i<=s.length();i++){dp[i][0]=1;}for(int i=1;i<s.length()+1;i++){for(int j=1;j<t.length()+1;j++){if(s.charAt(i-1)==t.charAt(j-1)){dp[i][j]=dp[i-1][j-1]+dp[i-1][j];}else{dp[i][j]=dp[i-1][j];}}}return dp[s.length()][t.length()];}
}