【高阶数据结构】哈希表 {哈希函数和哈希冲突;哈希冲突的解决方案:开放地址法,拉链法;红黑树结构 VS 哈希结构}

一、哈希表的概念

  • 顺序结构以及平衡树

    顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系。因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N);平衡树中为树的高度,即O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。

  • 哈希表

    如果构造一种存储结构,通过某种转换函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系。那么在查找时可以不经过任何比较,通过该函数一次直接从表中得到要搜索的元素:

    • 当向该结构中插入元素时:根据待插入元素的关键码,通过转换函数计算出该元素的存储位置并按此位置进行存放。

    • 当从该结构中搜索元素时:对元素的关键码进行同样的计算,获得元素的存储位置。

    该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数构造出来的结构称为哈希表(Hash Table或者称散列表)


二、哈希函数和哈希冲突

  • 哈希函数

    哈希函数的设计原则:

    1. 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
    2. 哈希函数计算出来的地址能均匀分布在整个空间中
    3. 哈希函数应该比较简单

    常见的哈希函数:

    1. 直接定址法

      取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
      优点:简单、均匀、不存在哈希冲突
      缺点:需要事先知道关键字的分布情况,只适合查找分布相对集中的情况。
      举例:1.编程题:字符串中第一个只出现一次字符 2.排序算法:计数排序

    2. 除留余数法

      设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数;

      按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

    例如:数据集合{1,7,6,4,5,9};
    哈希函数采用除留余数法:hash(key) = key % capacity; capacity为存储元素底层空间的总大小。

在这里插入图片描述

问:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

  • 哈希冲突

    • 对于两个数据元素的关键字k_i k_j,有k_i != k_j,但有:Hash(k_i) ==Hash(k_j)

      • 即:不同关键字通过哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞

      • 把关键码不同而具有相同哈希地址的数据元素称为“同义词”。

    问:发生哈希冲突该如何处理呢?


三、哈希冲突的解决方案

解决哈希冲突两种常见的方法是:开放地址法和链地址法

3.1 开放地址法

开放地址法:当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的下一个空位置中去。那如何寻找下一个空位置呢?

3.1.1 线性探测

  1. 线性探测
    比如2.2中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
    线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

    • 插入
      通过哈希函数获取待插入元素在哈希表中的位置
      如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

    在这里插入图片描述

    • 删除
      采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。
      比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素
      哈希表每个空间给个标记:EMPTY此位置为空, EXIST此位置已经有元素, DELETE元素已经删除

      插入时:对于EMPTY和DELETE标记的位置可以进行插入,EXIST不能插入。

      搜索时:遇到EXIST和DELETE标记的位置继续向后搜索,遇到EMPTY结束。

    • 扩容

      思考:哈希表什么情况下进行扩容?如何扩容?

      在这里插入图片描述

      载荷因子(空间占用率)达到基准值(0.7~0.8)就扩容。

      基准值越大,哈希冲突的概率越大,查找效率越低,但空间利用率越高。

      基准值越小,哈希冲突的概率越小,查找效率越高,但空间利用率越低。

    • Hash算法

      • 对于类型不匹配或者复杂类型的key值,不能直接求余计算哈希地址。这时我们需要一种算法,将不匹配或复杂类型的key转化为无符号整型,然后才能通过除留余数法计算哈希地址。我们将这样的算法称为Hash算法。

      • Hash算法的设计原则是:尽量避免出现key值不同但转换后的无符号整型相同的情况。使不同的key值转换成唯一、独特的无符号整型数据。降低哈希冲突的概率。

      • 以字符串Hash算法为例:

        • 问:为什么不选字符串首字母的assic码做key?

          答:字符的assic码共有128个,而字符串有无数种组合方式。单靠首字母的assic码区分字符串,违背了Hash算法的设计原则。会使哈希冲突的概率变大,所以我们取字符串所有字符的assic码和做key。

        • 仍然无法解决的问题:abcd acbd aadd

          最终方案:BKDR算法,在每次加和时累乘131,能使哈希冲突的概率大大降低。也是Java目前采用的字符串Hash算法。

    • 线性探测的实现

        enum State{EMPTY,DELETE,EXIST};template <class K, class V>struct HashData{pair<K,V> _kv;State _state = EMPTY;};//HashKey用于将不匹配或复杂的key值转化为size_t类型,然后才能通过除留余数法计算哈希地址。//对于不匹配的内置类型做强转:template <class K>struct HashKey{size_t operator()(const K& k){return (size_t)k;}};//对于常见复杂类型提供模版的特化:template <>struct HashKey<string>{size_t operator()(const string& str){size_t ret = 0;for(auto ch : str){ret += ch;ret *= 131; //BKDR算法}return ret;}};template <class K, class V, class Hash = HashKey<K>>class HashTable{vector<HashData<K,V>> _table;size_t _size= 0; //哈希表中的实际有效数据public:bool insert(const pair<K,V>& kv){//不允许键值冗余if(find(kv.first) != nullptr)return false;//检查载荷因子,进行扩容,复用下面的插入逻辑if(_table.size() == 0 || _size*10/_table.size() >= 7){int newsize = _table.size()==0? 10 : _table.size()*2;HashTable newHT; //创建新的哈希表对象newHT._table.resize(newsize);for(auto &e : _table){if(e._state == EXIST)newHT.insert(e._kv); //调用成员函数insert重新计算元素的映射位置}//交换两个哈希表的vector//函数返回前newHT包含扩容前的vector会被析构_table.swap(newHT._table); }Hash hash; //hash算法会将不匹配或复杂的key值转化为size_t类型int hashi = hash(kv.first)%_table.size(); //线性探测//遇到EMPTY或DELETE位置停下while(_table[hashi]._state == EXIST){++hashi;hashi %= _table.size(); //如果超出范围需折返到开头继续探测}_table[hashi]._kv = kv;_table[hashi]._state = EXIST;++_size;return true;}HashData<K,V>* find(const K& k){if(_table.size() == 0)return nullptr; //空表返回nullptrHash hash;int hashi = hash(k)%_table.size(); int start = hashi;//线性探测//遍历到EMPTY位置表示对应key值的元素不存在。//注意:遇到DELETE位置不能停,要继续向后查找。while(_table[hashi]._state != EMPTY){if(_table[hashi]._state == EXIST && _table[hashi]._kv.first == k){return &_table[hashi]; //找到返回数据地址}++hashi;hashi%=_table.size();//处理极端情况:表中元素的状态全是DELETEif(hashi == start) break;}return nullptr; //找不到返回nullptr}bool erase(const K& k){HashData<K,V>* ret = find(k);if(ret == nullptr)return false;else{//线性探测采用标记的伪删除法来删除一个元素ret->_state = DELETE; //所谓删除就是将对应key值的元素状态改为DELETE--_size; //记得修改大小哦return true;}}void printHT(){ //打印哈希表for(int i=0; i<_table.size(); ++i){if(_table[i]._state == EXIST){printf("[%d]:%d ", i, _table[i]._kv.first);//cout << _table[i]._kv.first << ":" << _table[i]._kv.second << endl; }else{printf("[%d]:* ", i);}}}};
    

3.1.2 二次探测

  1. 二次探测

线性探测的优点是实现非常简单,但其缺陷是元素之间相互占用位置导致产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找:H_i = (H_0 + i )% mH_i = (H_0 - i )% m

因此二次探测为了避免该问题,找下一个空位置的方法为:H_i = (H_0 + i^2 )% m, 或者 H_i = (H_0 - i^2 )% m

其中:i =1,2,3…。 H_0是通过散列函数Hashfunc(key)对元素的关键码 key 进行计算得到的位置。m是表的大小。

  • 将线性探测改为二次探测

      bool insert(const pair<K,V>& kv){if(find(kv.first) != nullptr)    return false;    //检查载荷因子,进行扩容    //......Hash hash;    int i = 1;    int hashi = hash(kv.first)%_table.size();     //二次探测while(_table[hashi]._state == EXIST){hashi += i*i; //加i的平方hashi %= _table.size();++i;}_table[hashi]._kv = kv;_table[hashi]._state = EXIST;++_size;return true;}
    

    提示:对应的find函数也应该改为二次探测才能正确运行!

    二次探测只能在一定程度上缓解线性探测带来的“洪水效应”,但其终归是占用式的,没有从根源上解决因占用而导致的冲突问题。


3.2 链地址法

  • 概念

    链地址法又叫拉链法,首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

    仍以2.2中的场景为例:

    在这里插入图片描述

    从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

  • 对比哈希表和红黑树

    • 查找

      哈希表的查找更快:O(1);红黑树的查找:O(log_2N)

      如果某个哈希桶过长(一般不会),可以考虑挂红黑树,以提高该哈希桶的搜索速度。

    • 插入

      红黑树的插入:消耗主要在查找空位置O(log_2N)+变色O(log_2N)+旋转O(1) ==> O(log_2N)。

      哈希表的插入:消耗主要在扩容,不仅要开空间拷贝数据,还要重新计算每个元素的哈希地址。扩容的时间复杂度O(N)

      使用rehash/reserve提前开空间,提高哈希表的插入效率。

unordered_map和unordered_set底层的哈希结构采用的就是开散列法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/819042.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Neo4j 图形数据库中有哪些构建块?

Neo4j 图形数据库具有以下构建块 - 节点属性关系标签数据浏览器 节点 节点是 Graph 的基本单位。 它包含具有键值对的属性&#xff0c;如下图所示。 NEmployee 节点 在这里&#xff0c;节点 Name "Employee" &#xff0c;它包含一组属性作为键值对。 属性 属性是…

dcoker+nginx解决前端本地开发跨域

步骤 docker 拉取nginx镜像跑容器 并配置数据卷nginx.conf nginx.conf文件配置 这里展示server server {listen 80;listen [::]:80;server_name localhost;#access_log /var/log/nginx/host.access.log main;location / {# 当我们访问127.0.0.1:8028就会跳转到ht…

ubuntu20.04安装+ros-noetic安装+内网穿透frp

刷机后的系统安装 ubuntu20.04安装安装ros-noetic安装各种必要的插件安装vscode内网穿透连接实验室主机配置frpc和frps文件运行完成自动化部署免密登录linux的免密登录windows上的免密登录 内网穿透的参考链接&#xff1a;如何优雅地访问远程主机&#xff1f;SSH与frp内网穿透配…

Bootstrap 5 保姆级教程(一):容器 网格系统

一、容器 1.1 固定宽度&#xff08;.container&#xff09; .container 类用于固定宽度并支持响应式布局的容器。 以下实例中&#xff0c;我们可以尝试调整浏览器窗口的大小来查看容器宽度在不同屏幕中等变化&#xff1a; <!doctype html> <html lang"en&quo…

【C语言回顾】分支和循环

前言1. if 分支进阶1.1 嵌套 if1.2 悬空 else 2. switch 语句3. while 循环4. for 循环5. goto语句结语 上期回顾: 【C语言回顾】数据类型和变量相关 前言 各位小伙伴&#xff0c;大家好&#xff01;话不多说&#xff0c;我们直接进入正题。 以下是C语言分支和循环的总结。 1…

ARM看门狗定时器

作用 在S3C2440A中&#xff0c;看门狗定时器的作用是当由于噪声和系统错误引起的故障干扰时恢复控制器的工作。 也就是说&#xff0c;系统内部的看门狗定时器需要在指定时间内向一个特殊的寄存器内写入一个数值&#xff0c;俗称喂狗。 如果喂狗的时间过了&#xff0c;那么看门…

STM32H7上实现AD5758驱动

目录 概述 1 下载ADI 5758 Demo 2 AD5758驱动的移植 2.1 使用STM32CubeMX创建工程 2.2 接口函数实现 2.2.1 驱动接口列表 2.2.2 函数实现 2.2.3 修正ad5758驱动 3 AD5758应用程序 3.1 编写测试程序 3.1.1 配置参数结构 3.1.2 配置参数函数 3.1.3 读取参数函数 3.…

时隔一年,再次讨论下AutoGPT-安装篇

AutoGPT是23年3月份推出的&#xff0c;距今已经1年多的时间了。刚推出时&#xff0c;我们还只能通过命令行使用AutoGPT的能力&#xff0c;但现在&#xff0c;我们不仅可以基于AutoGPT创建自己的Agent&#xff0c;我们还可以通过Web页面与我们创建的Agent进行聊天。这次的AutoGP…

设计模式——观察者模式17

观察者模式指多个对象间存在一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式。 中介者模式是N对N的双向关系。观察者模式是1对N的单向关系。 设计模式&#xff0c;一定要敲代码…

腾讯EdgeOne产品测评体验—金字塔般的网络安全守护神

作为一名对网络安全和性能优化充满热情的用户&#xff0c;我决定体验腾讯云下一代 CDN 服务 - EdgeOne。这款引以为傲的全方位服务如数来到&#xff0c;从域名解析、动静态智能加速到四层加速及DDoS/CC/Web/Bot 防护&#xff0c;一应俱全。随着时代风云变幻&#xff0c;日均数千…

高级数据结构与算法习题(7)

一、单选题 1、When solving a problem with input size N by divide and conquer, if at each stage the problem is divided into 8 sub-problems of equal size N/3, and the conquer step takes O(N2logN) to form the solution from the sub-solutions, then the overall…

Linux调试器之gdb

前言 我们前面介绍了几个基本的环境开发工具。例如通过yum我们可以安装和卸载软件、通过vim我们可以写代码、通过gcc和g我们可以编译代码成可执行程序。但是如何在Linux下调试代码呢&#xff1f;我们并未介绍&#xff0c;本期我们将来介绍最后一个工具 --- 调试器gdb。 本期内…

DAY13|239. 滑动窗口最大值、347.前K个高频元素

239. 滑动窗口最大值、347.前 K 个高频元素 239. 滑动窗口最大值347.前 K 个高频元素 239. 滑动窗口最大值 难度有些大啊… 其实队列没有必要维护窗口里的所有元素&#xff0c;只需要维护有可能成为窗口里最大值的元素就可以了&#xff0c;同时保证队列里的元素数值是由大到小…

基于U-Net的图像分割算法介绍

U-Net是一种用于图像分割的深度学习架构,其设计初衷是用于生物医学图像分割,尤其是医学影像中的细胞分割任务。U-Net结构独特,具有编码器-解码器结构,能够有效地捕捉图像中的局部和全局信息,并在像素级别上进行精确的分割。 相关论文: U-Net: Convolutional Networks for…

密码学基础 -- 走进RSA(2)(放弃数学原理版)

目录 1.概述 2. RSA测试 2.1 加解密实验 2.2 签名验签测试 3. RSA原理简介 4.小结 1.概述 从上面密码学基础 -- 走进RSA(1)(放弃数学原理版)-CSDN博客我们知道了非对称算法的密钥对使用时机&#xff0c;那么接下里我们继续讲解RSA&#xff0c;我们分别从RSA加解密、签名验…

科大讯飞星火开源大模型iFlytekSpark-13B GPU版部署方法

星火大模型的主页&#xff1a;iFlytekSpark-13B: 讯飞星火开源-13B&#xff08;iFlytekSpark-13B&#xff09;拥有130亿参数&#xff0c;新一代认知大模型&#xff0c;一经发布&#xff0c;众多科研院所和高校便期待科大讯飞能够开源。 为了让大家使用的更加方便&#xff0c;科…

leetcode-链表中间节点

876. 链表的中间结点 题目 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回第二个中间结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[3,4,5] 解释&#xff1a;链表只有一个中间…

12.MySQL应用架构演变

MySQL应用架构演变 1.总览 单机单库主从架构分库分表云数据库 2.单机单库 介绍 一个简单的小型网站或者应用背后的架构可以非常简单&#xff0c;数据存储只需要一个MySQL Instance就能满足数据读取和写入需求&#xff08;这里忽略掉了数据备份的实例&#xff09;&#xff…

三款好用的 Docker 可视化管理工具

文章目录 1、Docker Desktop1.1、介绍1.2、下载地址1.3、在Windows上安装Docker桌面1.4、启动Docker Desktop1.5、Docker相关学习网址 2、Portainer2.1、介绍2.2、安装使用 3、Docker UI3.1、介绍3.2、安装使用3.2.1、常规方式安装3.2.2、通过容器安装 Docker提供了命令行工具&…

【vue】购物车案例

change"fun"&#xff1a;元素值发生改变时&#xff0c;会触发事件fun <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale…