2024年MathorCup数学应用挑战赛C题思路分析(妈妈杯)

2024年第十四届MathorCup数学应用挑战赛C题解析

文章目录

  • 题目概览
    • 第一问:货量预测
    • 第二问:运输线路变化的预测
    • 第三问:单目标优化
    • 第四问:排班计划的优化
  • MATLAB代码框架
    • 货量预测
    • 人员排班

2024年的MathorCup数学应用挑战赛再次为我们带来了富有挑战性的题目。今年的C题聚焦于物流网络中的货量预测和人员排版优化问题。本文提供一个简单易懂的解析,帮助您把握解题的关键思路。
请添加图片描述

题目概览

C题分为四个部分,前两部分关注于预测,后两部分则是优化问题。

预测问题:要求我们预测物流网络中各分拣中心的货量。这里需要注意的是,预测不仅仅是基于历史数据,还需要考虑运输线路的变化对货量的影响。
优化问题:在预测的基础上,我们需要解决如何合理安排人员,以最低的成本完成分拣工作。

第一问:货量预测

在这里插入图片描述

对于第一问,我们可以选择多种预测模型。由于时间序列模型适合分析货物量随时间变化的趋势,我们可以考虑使用自回归整合滑动平均模型(ARIMA)或指数平滑模型。如果希望尝试较新的预测方法,可以考虑神经网络模型,但需要注意其复杂性。

在进行预测时,我们应该注意到11月2号和11月11号附近货物量的急速增加(由于双十一促销活动),并相应地处理这些异常值,以避免预测出现较大偏差。

第二问:运输线路变化的预测

在这里插入图片描述

当网络运输线路发生变化时,我们需要重新考虑预测模型。这里的关键点是,分拣中心的货量是由其上游的始发分拣中心决定的。我们需要为模型添加一个偏置项来适应线路变化的影响。

例如,如果SC10的某个始发中心SC61在未来30天内被取消,我们需要根据这一变化调整预测模型,增加一个相应的偏置权重。

第三问:单目标优化

在这里插入图片描述

第三问要求我们在完成工作的基础上,尽可能减少人员成本。我们需要考虑正式工和临时工的使用,并根据班次和人员花费的基本信息来构造约束条件和目标方程。

这里的目标是最小化安排的人数。我们首先应该使用正式工,然后尽可能少地使用临时工。通过将一天的工作时间拆分为九个区间,并根据预测的货物量来计算每个区间所需的人员数量,我们可以构建出一个单目标规划问题。

第四问:排班计划的优化

在这里插入图片描述

在第四问中,我们需要在已确定的班次人员数量条件下,制定合理的排班计划。这涉及到排列组合问题,我们需要在满足工作需求的同时,避免一人连续工作七天的情况。

MATLAB代码框架

货量预测

% 假设您已经有了历史货量数据,存储在名为data的变量中
data = [/* 货量历史数据 */];% 时间序列分析 - ARIMA模型示例
% 首先,对数据进行差分以使其平稳
differenced_data = diff(data, 1);% 然后,使用autocorr和pac functions找到合适的AR参数
% 这里只是一个示例,实际参数需要根据数据进行调整
[acf, lags] = autocorr(differenced_data);
pacf, lagsPACF = pacf(differenced_data, 20);% 使用ARIMA模型进行拟合
model = arima('ARLags',1,'D',1,'MALags',1);
[fit,~,logL] = estimate(model,differenced_data);% 进行预测
numPeriods = 12; % 预测未来12个时间段的货量
[predY,~,~] = forecast(fit,numPeriods);% 反差分以获得原始尺度的预测值
predicted_data = cumsum(predY) + cumsum(data(end,1:-1:end-1));

人员排班

% 假设您已经预测了未来货量的数组,存储在名为predicted_cargo的变量中
predicted_cargo = [/* 预测的货量数据 */];% 定义班次和人员需求
shifts = [/* 班次时间段,例如早班、中班、晚班 */];
staff_needed_per_shift = [/* 每个班次所需的最少人员数 */];% 线性规划示例
% 定义决策变量,x(i,j)表示第i个班次安排的第j个人
model = optimproblem('Objective', 'Minimize', 'x');
model.Objective = sum(staff_needed_per_shift .* x);% 添加约束条件,确保每个班次的人员需求得到满足
for i = 1:length(shifts)model.Constraints.(['shift_' num2str(i)]) = sum(x(i,:)) >= staff_needed_per_shift(i);
end% 每个人员不能同时在多个班次工作
for j = 1:length(staff)model.Constraints.(['staff_' num2str(j)]) = sum(x(:,j)) <= 1;
end% 求解线性规划问题
opts = optimoptions('intlinprog','Display','off');
[x,fval,exitflag,output] = intlinprog(staff_needed_per_shift, ...A, ...b, ...Aeq, ...beq, ...lb, ...ub, ...opts);% 输出排班结果
staff_assignments = reshape(x, length(staff), length(shifts));
disp(staff_assignments);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816490.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自增/减运算符,前缀++i与后缀i++的区别

最近在用 for 循环的时候&#xff0c;发现了自增运算符几种不同的写法&#xff0c;有点好奇&#xff0c;就想复习回顾下。 1 自增/减运算符 1.1 初始印象 首先捋一下运算符在前后的差别&#xff0c;脑子中第一印象是这个 i&#xff0c;先加&#xff0c;再用i&#xff0c;先…

基于物理原理的p-GaN HEMT动态导通电阻SPICE建模

来源&#xff1a;Physics-Based SPICE Modeling of Dynamic ON-State Resistance of p-GaN HEMTs&#xff08;TPEL 23年&#xff09; 摘要 这封快报介绍了一种新型基于物理学原理的SPICE建模方法&#xff0c;专门针对氮化镓基p型门极高电子迁移率晶体管&#xff08;p-GaN HEM…

【学习笔记十五】批次管理和容量管理

一、批次管理 1.配置 SAP EWM 特定参数 激活仓库的批次管理 2.ERP端物料需要启用批次管理 3.EWM物料需要启用批次管理 一般是ERP启用批次管理&#xff0c;相关的配置也会传输到EWM系统 4.建立批次主数据 5.创建采购订单并创建内向交货单&#xff0c;维护批次 6.维护产品主数…

【VS2019】x64 Native Tools Command Prompt for Vs 2019使用conda命令进入环境

【VS2019】x64 Native Tools Command Prompt for Vs 2019使用conda命令进入环境 安装完VS2019后&#xff0c;打开终端x64 Native Tools Command Prompt for Vs 2019&#xff0c;直接运行conda会出现‘conda’ 不是内部或外部命令&#xff0c;也不是可运行的程序 原因分析&am…

免费GPT-3.5部署指南

OpenAI近期宣布&#xff0c;GPT-3.5现已支持无账号使用&#xff0c;这一变化无疑为全球AI爱好者带来了福音。然而&#xff0c;由于网络和地域限制&#xff0c;国内许多朋友仍然面临着使用上的挑战。 今天&#xff0c;我将向大家推荐两个开源项目&#xff0c;它们能够帮助您在国…

Lua脚本使用手册(Redis篇)

Lua脚本 **简介&#xff1a;**Lua是一种功能强大的&#xff0c;高效&#xff0c;轻量级&#xff0c;可嵌入的脚本语言。它是动态类型语言&#xff0c;通过使用基于寄存器的虚拟机解释字节码运行&#xff0c;并具有增量垃圾收集的自动内存管理&#xff0c;是配置&#xff0c;脚…

26、Lua 学习笔记之四(Lua中的基本函数库)

Lua中的基本函数库 assert(v[,mess age])collectgarbage (opt [, arg])dofile (filename)error (message [, level])_G全局环境表(全局变量)getfenv(f)getmetatable(object)ipairs (t)load (func [, chunkname])loadfile ([filename])loadstring (string [, chunkname])next (t…

electron自动更新版本,复制可用

1、安装electron-updater要保证这3个安装在package.json - devDependencies里面&#xff0c;否则打包会缺少模块 2、其他报错有可能 electron版本和electron-updater 版本不兼容&#xff0c;兼容情况查询官网 3、setFeedURL&#xff08;&#xff09; 服务器地址目录 例如&#…

MySQL详细使用

1.安装 官网下载地址&#xff1a;MySQL :: Download MySQL Community Server (Archived Versions) 2.配置 添加环境变量 验证是否添加成功 cmd管理员身份打开&#xff0c;输入mysql&#xff08;如下为成功&#xff09; 初始化MySQL 以管理员身份运行cmd 输入 mysqld --ini…

React搭建一个文章后台管理系统

1、项目准备 本篇文章讲解的是一个简单的文章后台管理系统&#xff0c;系统的功能很简单&#xff0c;如下&#xff1a;登录、退出&#xff1b;首页&#xff1b;内容(文章)管理&#xff1a;文章列表、发布文章、修改文章。 1&#xff09;React官方脚手架&#xff1a;create-rea…

安装IntelliJ IDEA插件教程

安装IntelliJ IDEA插件&#xff1a;一份详细指南 在提升IntelliJ IDEA开发效率的过程中&#xff0c;插件扮演着不可或缺的角色。它们为IDE提供了额外的功能和工具&#xff0c;以满足开发者在特定编程语言、框架、测试、版本控制等方面的个性化需求。本文将为您详细阐述如何在I…

【已开源】​基于stm32f103的爬墙小车

​基于stm32f103的遥控器无线控制爬墙小车&#xff0c;实现功能为可平衡在竖直墙面上&#xff0c;并进行移动和转向&#xff0c;具有超声波防撞功能。 直接上&#xff1a; 演示视频如&#xff1a;哔哩哔哩】 https://b23.tv/BzVTymO 项目说明&#xff1a; 在这个项目中&…

数模 线性规划模型理论与实践

线性规划模型理论与实践 1.1 线性规划问题 在人们的生产实践中&#xff0c;经常会遇到如何利用现有资源来安排生产&#xff0c;以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支一数学规划&#xff0c;而线性规划(Linear Programming 简记LP)则是数学规划的一个…

架构师系列-搜索引擎ElasticSearch(五)- 索引设计

索引创建后&#xff0c;要非常谨慎&#xff0c;创建不好后面会出现各种问题。 索引设计的重要性 索引创建后&#xff0c;索引分片只能通过_split和_shrink 接口对其进行成倍的增加和缩减。 ES的数据是通过_routing分配到各个分片上的&#xff0c;所以本质上不推荐区改变索引的…

ubuntu git相关操作

1 安装git sudo apt install git git --version git version 2.25.1 2 解决git超时 2.1 扩大post的buffer git config --global http.postBuffer 524288000 git config --global http.postBuffer 157286400 2.2 换回HTTP1上传。上传之后再切换回HTTP2 …

AI克隆语音(基于GPT-SoVITS)

概述 使用GPT-SoVITS训练声音模型&#xff0c;实现文本转语音功能。可以模拟出语气&#xff0c;语速。如果数据质量足够高&#xff0c;可以达到非常相似的结果。相比于So-VITS-SVC需要的显卡配置更低&#xff0c;数据集更小&#xff08;我的笔记本NVIDIA GeForce RTX 4050 Lap…

智能水务系统:构建高效节水的城市水网

随着城市化进程的加速和人民生活水平的提高&#xff0c;对水务管理的需求也越来越高。传统的水务管理方式已经无法满足现代社会的需求&#xff0c;而智能水务系统的出现为水务管理带来了新的变革。本文将从项目背景、需求分析、建设目标、建设内容、技术方案、安全设计等方面&a…

网络篇06 | 应用层 自定义协议

网络篇06 | 应用层 自定义协议 01 固定协议设计&#xff08;简化版&#xff09;1&#xff09;总体设计2&#xff09;值设计 02 可变协议设计&#xff08;进阶版&#xff09;1&#xff09;固定头&#xff08;Fixed Header&#xff09;2&#xff09;可变头&#xff08;Variable H…

UBuntu18.04通过ODBC连接MySQL远程数据库

今天在做一个Qt视频播放器的小项目然后想要在ubuntu18.04运行这个项目&#xff0c;需要在Qt中连接远程的MySQL数据库&#xff0c;所以用到了ODBC。我在连接时遇到了一些问题&#xff0c;加之网上的教程各说纷纭&#xff0c;所以我花了很多时间去解决&#xff0c;所以决定做做笔…

数据资产与数据要素的重要性及数据资产入表的实践指南

## 引言在当今快速发展的数字化时代&#xff0c;数据资产已经成为企业最宝贵的资源之一。数据资产不仅对企业的运营决策有着至关重要的影响&#xff0c;而且在企业的财务健康和市场竞争力方面扮演着核心角色。数据要素&#xff0c;作为构成数据资产的基本单元&#xff0c;其管理…