数模 线性规划模型理论与实践

线性规划模型理论与实践

1.1 线性规划问题

  • 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支一数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
  • 自从1947年 G . B . D a n t z i g G.B.Dantzig G.B.Dantzig提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1.1 线性规划的实例与定义

1.实例:某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4千元与3千元。生产甲机床需用4、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产 x 1 x_1 x1台甲机床和 x 2 x_2 x2台乙机床时总利润最大,则 x 1 , x 2 x_1,x_2 x1,x2应满足
m a x z = 4 x 1 + 3 x 2 (1.1) max\ \ z=4x_1+3x_2\tag{1.1} max  z=4x1+3x2(1.1)

{ 2 x 1 + x 2 ≤ 10 x 1 + x 2 ≤ 8 x 2 ≤ 7 x 1 , x 2 ≥ 0 (1.2) \begin{cases} 2x_1+x_2\le10 \\ x_1+x_2\le8\\ x_2\le7\\ x_1,x_2\ge0 \end{cases}\tag{1.2} 2x1+x210x1+x28x27x1,x20(1.2)

变量 x 1 , x 2 x_1,x_2 x1,x2称之为决策变量,(1.1)式被称为问题的目标函数,(1.2)中的几个不等式是问题的约束条件,记为s.t(即subject to)。

2.定义:

  • 目标函数及约束条件均为线性函数,故被称为线性规划问题。线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
  • 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,往往也是很困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。

1.1.2 线性规划问题的解的概念

1. M a t l a b Matlab Matlab中求解线性规划的基本公式:下式一般求最小值,要求最大值在目标函数前加一个负号即可
m i n x c T x \underset{x}{min}\ \ c^Tx xmin  cTx

s . t . { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b s.t.\ \ \begin{cases} Ax\le b \\ Aeq\cdot x = beq\\ lb\le x\le ub \end{cases} s.t.   AxbAeqx=beqlbxub

其中c和x为n维向量, A 、 A e q A、Aeq AAeq为适当维数的矩阵, b 、 b e q b、beq bbeq为适当维数的列向量。

  • 第一个式子是目标函数的简化形式;
  • 第二个式子是所有不等式的集合;
  • 第三个式子是所有等的集合;
  • 第四个式子是决策变量的取值范围。

2.一般线性规划问题的(数学)标准型为:
m a x z = ∑ j = 1 n c j x j (1.3) max\ \ z=\sum_{j=1}^nc_jx_j\tag{1.3} max  z=j=1ncjxj(1.3)

s . t . { ∑ j = 1 n a i j x j = b i i = 1 , 2 , 3 , . . . , m x j ≥ 0 j = 1 , 2 , 3 , . . . , n (1.4) s.t.\ \ \begin{cases} \overset{n}{\underset{j=1}{\sum}} a_{ij}x_j=b_i\ \ \ i=1,2,3,...,m \\ \\ x_j\ge0\ \ \ j=1,2,3,...,n \end{cases}\tag{1.4} s.t.   j=1naijxj=bi   i=1,2,3,...,mxj0   j=1,2,3,...,n(1.4)

3.基础概念:

  • 可行解:满足约束条件(1.4)的解 x = [ x 1 , x n ] T x=[x_1,x_n]^T x=[x1,xn]T,称为线性规划问题的可行解。
  • 最优解:使目标函数(1.3)达到最大值的可行解叫最优解。
  • 可行域:所有可行解构成的集合称为问题的可行域,记为R。

1.1.3 线性规划的 M a t l a b Matlab Matlab标准形式及软件求解

1.线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便, M a t l a b Matlab Matlab中规定线性规划的标准形式为:
m i n x c T x \underset{x}{min}\ \ c^Tx xmin  cTx

s . t . { A x ≤ b A e q ⋅ x = b e q l b ≤ x ≤ u b s.t.\ \ \begin{cases} Ax\le b \\ Aeq\cdot x = beq\\ lb\le x\le ub \end{cases} s.t.   AxbAeqx=beqlbxub

其中, c , x , b , b e q , l b , u b c,x,b,beq,lb,ub c,x,b,beq,lb,ub为列向量, f f f称为价值向量, b b b称为资源向量, A 、 A e q A、Aeq AAeq为矩阵。

2. M a t l a b Matlab Matlab 中求解线性规划的命令为:

[x,fval]=linprog(c,A,b)
[x,fval]=linprog(c,A,b,Aeq,beq)
[x,fval]= linprog(c,A,b,Aeq,beq,lb,ub)

其中 x x x返回的是决策向量的取值, f v a l fval fval返回的是目标函数的最优值, c c c为价值向量, A , b A,b A,b对应的是线性不等式约束, A e q , b e q Aeq,beq Aeq,beq对应的是

线性等式约束, l b lb lb u b ub ub分别对应的是决策向量的下界向量和上界向量。

3.实例速递:( M a t l a b Matlab Matlab只能求最小值,最大值不是标准形式)

其中,所有的系数都加上了一个负号是因为在用 M a t l a b Matlab Matlab求解最大值。

1.1.4 可以转化为线性规划问题------构造

1.例题:

1.2 投资的收益和风险

1.2.1 问题提出

1.2.2 符号规定和基本假设

1.符号规定:

2.基本假设:

  • 投资数额 M M M相当大,为了便于计算,假设 M = 1 M=1 M=1
  • 投资越分散,总的风险越小;
  • 总体风险用投资项目 S i S_i Si中最大的一个风险来度量;
  • n + 1 n+1 n+1种资产 S i S_i Si之间是相互独立的;
  • 在投资的这一期间内, r i , p i , q i r_i,p_i,q_i ri,pi,qi为定值,不受意外因素影响;
  • 净收益和总体风险只受 r i , p i , q i r_i,p_i,q_i ri,pi,qi​影响,不受其它因素干扰。

1.2.3 模型的分析与建立

1.总体风险用所投资的 S i S_i Si中最大的一个风险来衡量,即
m a x { q i x i ∣ i = 1 , 2 , L , n } max\{q_ix_i|i=1,2,L,n\} max{qixii=1,2,L,n}
2.购买 S i ( i = 1 , L , n ) S_i(i=1,L,n) Si(i=1,L,n)所付交易费是一个分段函数,即
交易费 = { p i x i , x i ≥ u i p i u i , x i ≤ u i 交易费= \begin{cases} p_ix_i,\ \ \ x_i\ge u_i \\ p_iu_i,\ \ \ x_i\le u_i \end{cases} 交易费={pixi,   xiuipiui,   xiui
而题目i所给的定值 u i u_i ui(单位:元)相对总投资 M M M很少, p i u i p_iu_i piui更小,这样购买 S i S_i Si的净收益可以简化为 ( r i − p i ) x i (r_i-p_i)x_i (ripi)xi

3.要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型。

目标函数为:
{ m a x ∑ i = 0 n ( r i − p i ) x i m i n m a x { q i x i } ( ) \begin{cases} max\ \overset{n}{\underset{i=0}{\sum}}(r_i-p_i)x_i\\ min\ \ max\{q_ix_i\}() \end{cases} max i=0n(ripi)ximin  max{qixi}()
约束条件为:
{ ∑ i = 0 n ( 1 + p i ) x i = M x i ≥ 0 , i = 0 , 1 , . . . , n \begin{cases} \overset{n}{\underset{i=0}{\sum}}(1+p_i)x_i=M\\ x_i\ge0,\ \ i=0,1,...,n \end{cases} i=0n(1+pi)xi=Mxi0,  i=0,1,...,n
这是一个多模规划,不仅要找到净收益的最大值,还要找到风险评估的最小值,所以我们要把多模规划化简到单目标线性规划。

4.一共有三种方法:

①在实际投资中,投资者承受的风险程度不一样,若给定一个界限a,使最大的一个风险 q i x i M ≤ a \dfrac{q_ix_i}{M}\le a Mqixia,可以找到相应的投资方案,这样就把多目标规划变成一个目标的线性规划。

  • 模型一:固定风险水平,优化收益

  • 模型二:固定盈利水平,极小化风险

②投资者在权衡资产风险和预期收益两方面时,希望选择一个令自己满意的投资组合。因此对风险、收益分别赋予权重s(0<s≤1)和(1-s),s称为投资偏好系数。

  • 模型三:综合考虑

1.2.4 模型求解

1.以模型一求解为例:

由于a是任意给定的风险度,到底怎样没有一个准则,不同的投资者有不同的风险度。我们从a=0开始,以步长 Δ a = 0.001 \Delta a=0.001 Δa=0.001进行循环搜索,编制程序如下:

通过 M a t l a b Matlab Matlab运行可以得到下图所示的结果:

通过上图可以看出:

  • 风险大,收益也大;
  • 当投资越分散时,投资者承担的风险越小,这与题意一致。冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资;
  • 在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的转折点作为最优投资组合,大约是a=0.6%,Q=20%,所对应投资方案为:
    风险度a=0.006,收益Q=0.2019, x 0 = 0 x_0=0 x0=0 x 1 = 0.24 x_1=0.24 x1=0.24 x 2 = 0.4 x_2=0.4 x2=0.4 x 3 = 0.1091 x_3= 0.1091 x3=0.1091 x 4 = 0.2212 x_4= 0.2212 x4=0.2212

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816477.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

架构师系列-搜索引擎ElasticSearch(五)- 索引设计

索引创建后&#xff0c;要非常谨慎&#xff0c;创建不好后面会出现各种问题。 索引设计的重要性 索引创建后&#xff0c;索引分片只能通过_split和_shrink 接口对其进行成倍的增加和缩减。 ES的数据是通过_routing分配到各个分片上的&#xff0c;所以本质上不推荐区改变索引的…

AI克隆语音(基于GPT-SoVITS)

概述 使用GPT-SoVITS训练声音模型&#xff0c;实现文本转语音功能。可以模拟出语气&#xff0c;语速。如果数据质量足够高&#xff0c;可以达到非常相似的结果。相比于So-VITS-SVC需要的显卡配置更低&#xff0c;数据集更小&#xff08;我的笔记本NVIDIA GeForce RTX 4050 Lap…

智能水务系统:构建高效节水的城市水网

随着城市化进程的加速和人民生活水平的提高&#xff0c;对水务管理的需求也越来越高。传统的水务管理方式已经无法满足现代社会的需求&#xff0c;而智能水务系统的出现为水务管理带来了新的变革。本文将从项目背景、需求分析、建设目标、建设内容、技术方案、安全设计等方面&a…

网络篇06 | 应用层 自定义协议

网络篇06 | 应用层 自定义协议 01 固定协议设计&#xff08;简化版&#xff09;1&#xff09;总体设计2&#xff09;值设计 02 可变协议设计&#xff08;进阶版&#xff09;1&#xff09;固定头&#xff08;Fixed Header&#xff09;2&#xff09;可变头&#xff08;Variable H…

UBuntu18.04通过ODBC连接MySQL远程数据库

今天在做一个Qt视频播放器的小项目然后想要在ubuntu18.04运行这个项目&#xff0c;需要在Qt中连接远程的MySQL数据库&#xff0c;所以用到了ODBC。我在连接时遇到了一些问题&#xff0c;加之网上的教程各说纷纭&#xff0c;所以我花了很多时间去解决&#xff0c;所以决定做做笔…

数据资产与数据要素的重要性及数据资产入表的实践指南

## 引言在当今快速发展的数字化时代&#xff0c;数据资产已经成为企业最宝贵的资源之一。数据资产不仅对企业的运营决策有着至关重要的影响&#xff0c;而且在企业的财务健康和市场竞争力方面扮演着核心角色。数据要素&#xff0c;作为构成数据资产的基本单元&#xff0c;其管理…

【opencv】示例-stiching_detailed.cpp 使用OpenCV进行图像拼接的整体流程

#include <iostream> // 引入输入输出流库 #include <fstream> // 引入文件流库&#xff0c;用于文件输入输出 #include <string> // 引入字符串库 #include "opencv2/opencv_modules.hpp" // 引入OpenCV模块 #include <opencv2/core/utility.h…

2023年看雪安全技术峰会(公开)PPT合集(11份)

2023年看雪安全技术峰会&#xff08;公开&#xff09;PPT合集&#xff0c;共11份&#xff0c;供大家学习参阅。 1、MaginotDNS攻击&#xff1a;绕过DNS 缓存防御的马奇诺防线 2、从形式逻辑计算到神经计算&#xff1a;针对LLM角色扮演攻击的威胁分析以及防御实践 3、TheDog、0…

Mac 软件清单

~自留备用~ Macbook用了几年之后, 512G的内置硬盘有些紧张了, 这几天总是提示空间不足, 就重装了下系统, 重装之后竟然不记得有些软件的名字和下载链接, 特此记录 Office 办公套件 直接从微软官网下载Office 安装包https://officecdnmac.microsoft.com/pr/C1297A47-86C4-4C1F…

Kafka 简单介绍

目录 一 消息队列&#xff08;MQ&#xff09; 1&#xff0c;为什么需要消息队列&#xff08;MQ 2&#xff0c;常见的 MQ 中间件 3&#xff0c;MQ 传统应用场景之异步处理 4&#xff0c;使用消息队列的好处 5&#xff0c;消息队列的两种模式 5.1点对点模式&#xf…

车载电子电器架构 —— 平行开发策略

车载电子电器架构 —— 平行开发策略 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己…

Jmeter配置服务器监控插件

1.安装插件管理器 插件官网地址&#xff1a;JMeter Plugins :: JMeter-Plugins.org 点击 Plugins Manager,如上图所示&#xff0c; &#xff0c;点击jar file下载“plugins-manager.jar”&#xff0c;下载后放到“jmeter\lib\ext”目录下&#xff0c;重启jmeter。 2.安装资源…

网络篇04 | 应用层 mqtt(物联网)

网络篇04 | 应用层 mqtt&#xff08;物联网&#xff09; 1. MQTT协议介绍1.1 MQTT简介1.2 MQTT协议设计规范1.3 MQTT协议主要特性 2 MQTT协议原理2.1 MQTT协议实现方式2.2 发布/订阅、主题、会话2.3 MQTT协议中的方法 3. MQTT协议数据包结构3.1 固定头&#xff08;Fixed header…

论文笔记:The Expressive Power of Transformers with Chain of Thought

ICLR 2024 reviewer 评分 6888【但是chair 很不喜欢】 1 intro 之前的研究表明&#xff0c;即使是具有理想参数的标准Transformer&#xff0c;也无法完美解决许多大规模的顺序推理问题&#xff0c;如模拟有限状态机、判断图中的节点是否相连&#xff0c;或解决矩阵等式问题 这…

系统架构最佳实践 -- 统一身份认证系统

目录 1.系统架构设计&#xff1a; 2.用户认证与授权&#xff1a; 3.用户身份管理&#xff1a; 4.安全性保障&#xff1a; 5.日志记录与审计&#xff1a; 6.高可用性与容错性&#xff1a; 7.用户体验优化&#xff1a; 随着互联网的快速发展和应用的普及&#xff0c;人们在…

Linux操作系统中关于用户管理的操作

创建新用户 useradd 【选项】 用户名 在/etc/passwd中以追加的方式在passwd的最后一行添加用户信息。 可以使用命令tail -n 1/etc/passwd查看文件的最后一行内容。 ls /home/首先/home/这是普通用户的家目录&#xff0c; 在/home/下会有一个跟用户名同名的家目录&#xf…

《经典论文阅读2》基于随机游走的节点表示学习—Deepwalk算法

word2vec使用语言天生具备序列这一特性训练得到词语的向量表示。而在图结构上&#xff0c;则存在无法序列的难题&#xff0c;因为图结构它不具备序列特性&#xff0c;就无法得到图节点的表示。deepwalk 的作者提出&#xff1a;可以使用在图上随机游走的方式得到一串序列&#x…

荔枝派LicheePi 4A RISCV板子支持的好玩的AI模型

荔枝派LicheePi 4A 是基于 Lichee Module 4A 核心板的 高性能 RISC-V Linux 开发板&#xff0c;以 TH1520 为主控核心&#xff08;4xC9101.85G&#xff0c; RV64GCV&#xff0c;4TOPSint8 NPU&#xff0c; 50GFLOP GPU&#xff09;&#xff0c;板载最大 16GB 64bit LPDDR4X&…

给自己的机器人部件安装单目摄像头并实现gazebo仿真功能

手术执行器添加摄像头 手术执行器文件夹surgical_new内容展示如何添加单目摄像头下载现成的机器人环境文件启动仿真环境 手术执行器文件夹surgical_new内容展示 进入src文件夹下选择进入vision_obliquity文件夹 选择launch 有两个可用gazebo中rviz展示的launch文件&#xff0…

Github Coplit的认证及其在JetBrains中的使用

原文地址&#xff1a;Github Coplit的认证及其在JetBrains中的使用 - Pleasure的博客 下面是正文内容&#xff1a; 前言 今天分享一个可有可无的小技巧&#xff0c;水一篇文。 如标题所述&#xff0c;Github Coplit的认证及其在JetBrains中的使用 正文 介绍JetBrains JetBrain…