架构师系列-搜索引擎ElasticSearch(五)- 索引设计

索引创建后,要非常谨慎,创建不好后面会出现各种问题。

索引设计的重要性

        索引创建后,索引分片只能通过_split和_shrink 接口对其进行成倍的增加和缩减。

        ES的数据是通过_routing分配到各个分片上的,所以本质上不推荐区改变索引的分片数量的,因为这样都会对数据进行重新移动。还有就是索引只能新增字段,不能对字段进行修改和删除,缺乏灵活性,所以每次都只能通过_reindex重建索引了,还有就是一个分片的大小以及所以分片数量的多少严重影响到了索引的查询和写入性能,所以可想而知,设计一个好的索引能够减少后期的运维管理和提高不少性能,所以前期对索引的设计是相当的重要的。

基于时间的索引设计

Index设计时要考虑的第一件事,就是基于时间对Index进行分割,即每隔一段时间产生一个新的Index。

因为现实世界的数据是随着时间的变化而不断产生的,切分管理可以获得足够的灵活性和更好的性能。

         如果数据都存储在一个Index中,很难进行扩展和调整,因为Elasticsearch中Index的某些设置在创建时就设定好了,是不能更改的,比如Primary Shard的个数。而根据时间来切分Index,则可以实现一定的灵活性,既可以在数据量过大时及时调整Shard个数,也可以及时响应新的业务需求。
        大多数业务场景下,客户对数据的请求都会命中在最近一段时间上,通过切分Index,可以尽可能的避免扫描不必要的数据,提高性能。

时间间隔

        根据上面的分析,自然是时间越短越能保持灵活性,但是这样做就会导致产生大量的Index,而每个Index都会消耗资源来维护其元信息的,因此需要在灵活性、资源和性能上做权衡。
        1)常见的间隔有小时、天、周和月:先考虑总共要存储多久的数据,然后选一个既不会产生大量Index又能够满足于定灵活性的间隔,比如你需要存储6个月的数据,那么一开始选择“周“这个间隔就会比较合适。

        2)考虑业务增长速度:假如业务增长的特别快,比如上周产生了1亿数据,这周就增长到了10亿,那么就需要调低这个间隔来保证有足够的弹性能应对变化。  

如何实现分割

        切分行为是由客户端(数据的写不端)发起的,根据时间间隔与数据产生时间将数据写入不同的Index中,为了易于区分,会在Index的名字中加上对应的时间标识。
        创建新Index这件事,可以是客户端主动发起一个创建的请求,带上具体的Settings、Mappings等信息,但是可能会有一个时间错位,即有新数据写入时新的ndex还没有建好,Elasticsearch提供了更优雅的方式来实现这个动作,即Index Template  (索引模板)

使用索引模板

         就是把已经创建好的某个索引的参数设置(settings)和索引映射(mapping)保存下来作为模板,在创建新索引时,指定要使用的模板名,就可以直接重用已经定义好的模板中的设置和映射。


        Elasticsearch基于与索引名称匹配的通配符模式将模板应用于新索引,也就是说通过索引进行匹配,看看新建的索引是否符合索引模板,如果符合,就将索引模板的相关设置应用到新的索引,如果同时符合多个索引模板呢,这里需要对参数priority进行比较,这样会选择priority大的那个模板进行创建索引。
        在创建索引模板时,如果匹配有包含的关系,或者相同,则必须设置priority为不同的值,否则会报错,索引模板也是只有在新创建的时候起到作用,修改索引模板对现有的索引没有影响,同样如果在索引中设置了一些设置或者mapping都会覆盖索引模板中相同的设置或者mapping。

索引模板的用途

      如果你需要每间隔一定的时间就建立一次索引,你只需要配置好索引模板,以后就可以直接使用这个模板中的设置,不用每次都设置settings和mappings。

创建索引模板

PUT _index_template/logstash-village
{"index_patterns": ["logstash-village-*"  // 可以通过"logstash-village-*"来适配创建的索引],"template": {"settings": {"number_of_shards": "3", //指定模板分片数量"number_of_replicas": "2"  //指定模板副本数量},"aliases": {"logstash-village": {}  //指定模板索引别名},"mappings": {   //设置映射"dynamic": "strict", //禁用动态映射"properties": {"@timestamp": {"type": "date","format": "strict_date_optional_time||epoch_millis||yyyy-MM-dd HH:mm:ss"},"@version": {"doc_values": false,"index": "false","type": "integer"},"name": {"type": "keyword"},"province": {"type": "keyword"},"city": {"type": "keyword"},"area": {"type": "keyword"},"addr": {"type": "text","analyzer": "ik_smart"},"location": {"type": "geo_point"},"property_type": {"type": "keyword"},"property_company": {"type": "text","analyzer": "ik_smart"},"property_cost": {"type": "float"},"floorage": {"type": "float"},"houses": {"type": "integer"},"built_year": {"type": "integer"},"parkings": {"type": "integer"},"volume": {"type": "float"},"greening": {"type": "float"},"producer": {"type": "keyword"},"school": {"type": "keyword"},"info": {"type": "text","analyzer": "ik_smart"}}}}
}

模板参数

分片设计

        所谓分片设计,就是如何设定主分片的个数。看上去只是一个数字而已,也许在很多场景下,即使不设定也不会有问题(ES7默认是1个主分片一个副本分片),但是如果不提前考虑,一旦出问题就可能导致系统性能下降、不可访问、甚至无法恢复,换句话说,即使使用默认值,也应该是通过足够的评估后作出的决定,而非拍脑袋定的。

限制分片大小

        单个Shard的存储大小不超过30GB。Elastic专家根据经验总结出来大家普遍认为30GB是个合适的上限值,实践中发现单个Shard过大(超过30GB)会导致系统不稳定。 ​

        为什么不能超过30GB?主要是考虑Shard Relocate过程的负载,我们知道,如果Shard不均衡或者部分节点故障,Elasticsearch会做Shard Relocate,在这个过程中会搬移Shard,如果单个Shard过大,会导致CPU、IO负载过高进而影响系统性能与稳定性。

 评估分片数量

单个Index的Primary Shard个数 = k * 数据节点个数

在保证第一点的前提下,单个Index的Primary Shard个数不宜过多,否则相关的元信息与缓存会消耗过多的系统资源,这里的k,为一个较小的整数值,建议取值为1,2等,整数倍的关系可以让Shard更好地均匀分布,可以充分的将请求分散到不同节点上。

 小索引设计

对于很小的Index,可以只分配1~2个Primary Shard的

​有些情况下,Index很小,也许只有几十、几百MB左右,那么就不用按照第二点来分配了,只分配1~2个Primary Shard是可以的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816476.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu git相关操作

1 安装git sudo apt install git git --version git version 2.25.1 2 解决git超时 2.1 扩大post的buffer git config --global http.postBuffer 524288000 git config --global http.postBuffer 157286400 2.2 换回HTTP1上传。上传之后再切换回HTTP2 …

AI克隆语音(基于GPT-SoVITS)

概述 使用GPT-SoVITS训练声音模型,实现文本转语音功能。可以模拟出语气,语速。如果数据质量足够高,可以达到非常相似的结果。相比于So-VITS-SVC需要的显卡配置更低,数据集更小(我的笔记本NVIDIA GeForce RTX 4050 Lap…

智能水务系统:构建高效节水的城市水网

随着城市化进程的加速和人民生活水平的提高,对水务管理的需求也越来越高。传统的水务管理方式已经无法满足现代社会的需求,而智能水务系统的出现为水务管理带来了新的变革。本文将从项目背景、需求分析、建设目标、建设内容、技术方案、安全设计等方面&a…

网络篇06 | 应用层 自定义协议

网络篇06 | 应用层 自定义协议 01 固定协议设计(简化版)1)总体设计2)值设计 02 可变协议设计(进阶版)1)固定头(Fixed Header)2)可变头(Variable H…

UBuntu18.04通过ODBC连接MySQL远程数据库

今天在做一个Qt视频播放器的小项目然后想要在ubuntu18.04运行这个项目,需要在Qt中连接远程的MySQL数据库,所以用到了ODBC。我在连接时遇到了一些问题,加之网上的教程各说纷纭,所以我花了很多时间去解决,所以决定做做笔…

数据资产与数据要素的重要性及数据资产入表的实践指南

## 引言在当今快速发展的数字化时代,数据资产已经成为企业最宝贵的资源之一。数据资产不仅对企业的运营决策有着至关重要的影响,而且在企业的财务健康和市场竞争力方面扮演着核心角色。数据要素,作为构成数据资产的基本单元,其管理…

【CSS】CSS水平居中方案

CSS水平居中方案 1. 行内元素水平居中 设置父元素的text-align:center .box {width: 300px;height: 300px;margin: 100px auto;text-align: center;background-color: pink; }2. 块级元素水平居中 当块级元素设置了明确的宽度数值时,可以使用margin: 0 auto 3.…

【opencv】示例-stiching_detailed.cpp 使用OpenCV进行图像拼接的整体流程

#include <iostream> // 引入输入输出流库 #include <fstream> // 引入文件流库&#xff0c;用于文件输入输出 #include <string> // 引入字符串库 #include "opencv2/opencv_modules.hpp" // 引入OpenCV模块 #include <opencv2/core/utility.h…

2023年看雪安全技术峰会(公开)PPT合集(11份)

2023年看雪安全技术峰会&#xff08;公开&#xff09;PPT合集&#xff0c;共11份&#xff0c;供大家学习参阅。 1、MaginotDNS攻击&#xff1a;绕过DNS 缓存防御的马奇诺防线 2、从形式逻辑计算到神经计算&#xff1a;针对LLM角色扮演攻击的威胁分析以及防御实践 3、TheDog、0…

2024软件工程第一次作业

communication tasks Set a project (can use the project I give in the class in the file), then try to develop a set of actions for the communication activity. Select one action and define a task set for it. 1.设置一个项目&#xff08;可以使用我上课在文件中给…

python调用Microsoft Word把文件夹下所有docx或doc批量转化为PDF

python调用Microsoft Word把文件夹下所有docx或doc批量转化为PDF 首先&#xff0c;确保你的系统上安装了Microsoft Word。然后&#xff0c;你需要安装comtypes库&#xff0c;如果你还没有安装&#xff0c;可以通过以下命令进行安装&#xff1a; pip install comtypes以下是一个…

Mac 软件清单

~自留备用~ Macbook用了几年之后, 512G的内置硬盘有些紧张了, 这几天总是提示空间不足, 就重装了下系统, 重装之后竟然不记得有些软件的名字和下载链接, 特此记录 Office 办公套件 直接从微软官网下载Office 安装包https://officecdnmac.microsoft.com/pr/C1297A47-86C4-4C1F…

Kafka 简单介绍

目录 一 消息队列&#xff08;MQ&#xff09; 1&#xff0c;为什么需要消息队列&#xff08;MQ 2&#xff0c;常见的 MQ 中间件 3&#xff0c;MQ 传统应用场景之异步处理 4&#xff0c;使用消息队列的好处 5&#xff0c;消息队列的两种模式 5.1点对点模式&#xf…

transformer上手(5) —— 必要的 Pytorch 知识

Transformers 库建立在 Pytorch 框架之上&#xff08;Tensorflow 的版本功能并不完善&#xff09;&#xff0c;虽然官方宣称使用 Transformers 库并不需要掌握 Pytorch 知识&#xff0c;但是实际上我们还是需要通过 Pytorch 的 DataLoader 类来加载数据、使用 Pytorch 的优化器…

【机器学习300问】68、随机初始化神经网络权重的好处?

一、固定的初始化神经网络权重可能带来的问题 在训练神经网络的时候&#xff0c;初始化权重如果全部设置为0或某个过大值/过小值。会导致一些问题&#xff1a; 对称权重问题&#xff1a;全为0的初始化权重会导致神经网络在前向传播时接收到的信号输入相同。每个神经网络节点中…

车载电子电器架构 —— 平行开发策略

车载电子电器架构 —— 平行开发策略 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己…

Jmeter配置服务器监控插件

1.安装插件管理器 插件官网地址&#xff1a;JMeter Plugins :: JMeter-Plugins.org 点击 Plugins Manager,如上图所示&#xff0c; &#xff0c;点击jar file下载“plugins-manager.jar”&#xff0c;下载后放到“jmeter\lib\ext”目录下&#xff0c;重启jmeter。 2.安装资源…

网络篇04 | 应用层 mqtt(物联网)

网络篇04 | 应用层 mqtt&#xff08;物联网&#xff09; 1. MQTT协议介绍1.1 MQTT简介1.2 MQTT协议设计规范1.3 MQTT协议主要特性 2 MQTT协议原理2.1 MQTT协议实现方式2.2 发布/订阅、主题、会话2.3 MQTT协议中的方法 3. MQTT协议数据包结构3.1 固定头&#xff08;Fixed header…

论文笔记:The Expressive Power of Transformers with Chain of Thought

ICLR 2024 reviewer 评分 6888【但是chair 很不喜欢】 1 intro 之前的研究表明&#xff0c;即使是具有理想参数的标准Transformer&#xff0c;也无法完美解决许多大规模的顺序推理问题&#xff0c;如模拟有限状态机、判断图中的节点是否相连&#xff0c;或解决矩阵等式问题 这…

系统架构最佳实践 -- 统一身份认证系统

目录 1.系统架构设计&#xff1a; 2.用户认证与授权&#xff1a; 3.用户身份管理&#xff1a; 4.安全性保障&#xff1a; 5.日志记录与审计&#xff1a; 6.高可用性与容错性&#xff1a; 7.用户体验优化&#xff1a; 随着互联网的快速发展和应用的普及&#xff0c;人们在…