深度学习图像处理基础工具——opencv 实战信用卡数字识别

任务 信用卡数字识别

穿插之前学的知识点  形态学操作 模板匹配 等

总体流程与方法

1.有一个模板 2 用轮廓检测把模板中数字拿出来 外接矩形(模板和输入图像的大小要一致

)3 一系列预处理操作

问题的解决思路

1.分析准备:准备模板,读取文件——转化为灰度图——转化为二值图——提取轮廓——遍历每一个轮廓 得到每个数字的模板,排序,大小裁剪为指定大小(57*88)digits[i] = roi

2.处理输入的带数字的银行卡  (1)预处理 我们需要拿到的是 一组一组的数字 一共四组  读取文件——变换大小——转化为灰度图——形态学操作(礼帽操作突出明亮区域——梯度操作计算轮廓信息——闭操作将数字连在一起——二值化操作寻找合适阈值——再来一个闭操作——计算轮廓——遍历轮廓(选择合适区域 排除不是数字的轮廓)——轮廓排序——遍历轮廓的每一个数字——预处理计算每一组轮廓——计算每一组中的每一个值——匹配得分——得到数字画出来——得到结果——打印结果)

#设置参数

ap = argparse.ArgumentParser()#编写命令行接口
ap.add_argument("-i", "--image", required=True,help="path to input image")#添加命令行参数
ap.add_argument("-t", "--template", required=True,help="path to template OCR-A image")
args = vars(ap.parse_args())#解析参数 将参数转化为字典的形式

img = cv2.imread(args["template"])
def cv_show(name,img):cv2.imshow(name, img)cv2.waitKey(0)# waitKey()#是在一个给定的时间内(单位ms)等待用户按键触发 0 无限等待 按任意键继续cv2.destroyAllWindows()

1.cv2.cvtColor颜色空间转换函数 cv2.imread()和cv2.cvtColor() 的使用-CSDN博客

ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#颜色空间转换函数
2.cv2.threshold  二值化函数 [OpenCV] cv2.threshold二值化函数使用方法总结_cv2.threshold函数-CSDN博客
ref = cv2.threshold(ref, 100, 255, cv2.THRESH_BINARY_INV)[1]#二值化函数

3.计算轮廓 

refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#查找轮廓函数 只检测外轮廓 只保留四个点轮廓信息

4.画出轮廓

cv2.drawContours(img,refCnts,-1,(0,0,255),3) #画出轮廓函数

5.轮廓排序

refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下

6.遍历轮廓

digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):# 计算外接矩形并且resize成合适大小(x, y, w, h) = cv2.boundingRect(c)roi = ref[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))# 每一个数字对应每一个模板digits[i] = roi
2.0初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

2.1 对要识别的图像进行大小灰度处理

#读取输入图像,预处理
image = cv2.imread(args["image"])
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)

2.2 #礼帽操作,突出更明亮的区域

#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
#
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的ksize=-1)gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")print (np.array(gradX).shape)
cv_show('gradX',gradX)
2.3#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) 
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)#再来一个闭操作thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)2.4# 计算轮廓threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []# 遍历轮廓
for (i, c) in enumerate(cnts):# 计算矩形(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组if ar > 2.5 and ar < 4.0:if (w > 40 and w < 55) and (h > 10 and h < 20):#符合的留下来locs.append((x, y, w, h))# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):# initialize the list of group digitsgroupOutput = []# 根据坐标提取每一个组group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]cv_show('group',group)# 预处理group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv_show('group',group)# 计算每一组的轮廓digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0]# 计算每一组中的每一个数值for c in digitCnts:# 找到当前数值的轮廓,resize成合适的的大小(x, y, w, h) = cv2.boundingRect(c)roi = group[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))cv_show('roi',roi)# 计算匹配得分scores = []# 在模板中计算每一个得分for (digit, digitROI) in digits.items():# 模板匹配result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)(_, score, _, _) = cv2.minMaxLoc(result)scores.append(score)# 得到最合适的数字groupOutput.append(str(np.argmax(scores)))# 画出来cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)# 得到结果output.extend(groupOutput)# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)

总的代码

# 导入工具包
from imutils import contours
import numpy as np
import argparse
import cv2
import myutils# 设置参数
ap = argparse.ArgumentParser()#编写命令行接口
ap.add_argument("-i", "--image", required=True,help="path to input image")#添加命令行参数
ap.add_argument("-t", "--template", required=True,help="path to template OCR-A image")
args = vars(ap.parse_args())#解析参数 将参数转化为字典的形式# 指定信用卡类型
FIRST_NUMBER = {"3": "American Express","4": "Visa","5": "MasterCard","6": "Discover Card"
}
# 绘图展示
def cv_show(name,img):cv2.imshow(name, img)cv2.waitKey(0)# waitKey()–是在一个给定的时间内(单位ms)等待用户按键触发 0 无限等待 按任意键继续cv2.destroyAllWindows()
# 读取一个模板图像
img = cv2.imread(args["template"])
cv_show('img',img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#颜色空间转换函数
cv_show('ref',ref)
# 二值图像
ref = cv2.threshold(ref, 100, 255, cv2.THRESH_BINARY_INV)[1]#二值化函数
cv_show('ref',ref)# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#查找轮廓函数 只检测外轮廓 只保留四个点轮廓信息cv2.drawContours(img,refCnts,-1,(0,0,255),3) #画出轮廓函数
cv_show('img',img)
print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):# 计算外接矩形并且resize成合适大小(x, y, w, h) = cv2.boundingRect(c)roi = ref[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))# 每一个数字对应每一个模板digits[i] = roi# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))#读取输入图像,预处理
image = cv2.imread(args["image"])
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
#
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的ksize=-1)gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")print (np.array(gradX).shape)
cv_show('gradX',gradX)#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)#再来一个闭操作thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)# 计算轮廓threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []# 遍历轮廓
for (i, c) in enumerate(cnts):# 计算矩形(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组if ar > 2.5 and ar < 4.0:if (w > 40 and w < 55) and (h > 10 and h < 20):#符合的留下来locs.append((x, y, w, h))# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):# initialize the list of group digitsgroupOutput = []# 根据坐标提取每一个组group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]cv_show('group',group)# 预处理group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv_show('group',group)# 计算每一组的轮廓digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)digitCnts = contours.sort_contours(digitCnts,method="left-to-right")[0]# 计算每一组中的每一个数值for c in digitCnts:# 找到当前数值的轮廓,resize成合适的的大小(x, y, w, h) = cv2.boundingRect(c)roi = group[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))cv_show('roi',roi)# 计算匹配得分scores = []# 在模板中计算每一个得分for (digit, digitROI) in digits.items():# 模板匹配result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)(_, score, _, _) = cv2.minMaxLoc(result)scores.append(score)# 得到最合适的数字groupOutput.append(str(np.argmax(scores)))# 画出来cv2.rectangle(image, (gX - 5, gY - 5),(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)cv2.putText(image, "".join(groupOutput), (gX, gY - 15),cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)# 得到结果output.extend(groupOutput)# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816408.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 安装 nginx + httpd + php-fpm

原文地址&#xff1a;http://www.taoluyuan.com/index.php/archives/30/#2 展示 1.安装 1.1安装docker 1.2安装nginx 1.3安装apache-httpd 1.4安装php-fpm 2.配置nginx反向代理 httpdphp-fmp 1.安装 1.1安装docker 移除旧的版本&#xff1a; sudo yum remove docker 安装…

Hive进阶Day05

一、HDFS分布式文件存储系统 1-1 HDFS的存储机制 按块&#xff08;block&#xff09;存储 hdfs在对文件数据进行存储时&#xff0c;默认是按照128M(包含)大小进行文件数据拆分&#xff0c;将不同拆分的块数据存储在不同datanode服务器上 拆分后的块数据会被分别存储在不同的服…

Linux 文件的操作命令 移动 复制 删除

cp 复制文件 cp [选项] 源文件或目录 目标文件或目录-r 或 -R&#xff1a;用于复制目录及其内容。-i&#xff1a;在覆盖目标文件之前提示用户确认。-u&#xff1a;当源文件比目标文件新或源文件的目标文件不存在时&#xff0c;才复制源文件。-v&#xff1a;显示详细的复制过程…

在Mac中打开终端的3种方法

在使用Mac时&#xff0c;有时需要深入研究设置&#xff0c;或者完成一些开发人员级的命令行任务。为此&#xff0c;你需要终端应用程序来访问macOS上的命令行。下面是如何启动它。 如何使用聚焦搜索打开终端 也许打开终端最简单、最快的方法是通过聚焦搜索。要启动聚焦搜索&a…

GO语言调用本地自定义模块

1.创建一个模块 创建文件夹greetings并进入该文件夹 mkdir greetingss && cd greetings 初始化模块 go mod init com.gotest/greetings 初始化模块文件成功 模块文件内容如下 确保已安装VSCODE前提下,运行下面命令创建greetings.go文件 在greethings.go添加下面代…

python递归统计文件夹下pdf文件的数量

python递归统计文件夹下pdf文件的数量 import os from docx import Documentdef count_all_pages(root_dir):total_pages 0# 遍历文件夹for dirpath, dirnames, filenames in os.walk(root_dir):for filename in filenames:# if filename.endswith(.docx) or filename.endswit…

Python爬虫:urllib库的基本使用

文章目录 一、urllib简介二、请求的发送和响应&#xff08;一&#xff09;发送请求&#xff08;二&#xff09;获取相应内容&#xff08;三&#xff09;下载所需文件 三、URL请求对象的定制四、常见请求方式&#xff08;一&#xff09;get请求方式&#xff08;二&#xff09;po…

当我们使用git 上传码云的时候报错:Push rejected Push to origin/master was rejected

在我们推送成果去git&#xff08;码云&#xff09;的过程中报错&#xff1a;Push rejected Push to origin/master was rejected 这个问题是我们在推的时候被拒绝了 控制台报错&#xff1a; 18:46:19.665: [zengqingqingandluoxuwen] git -c credential.helper -c core.quote…

系统架构最佳实践 -- 金融企业的资损问题介绍

什么是资损 资损通常来讲是指支付场景下的资金损失&#xff0c;这里可以从两个维度看 用户角度&#xff1a;多扣用户款导致用户资金损失&#xff0c;此问题一般需要通过客服等渠道反馈&#xff0c;可以把多的钱退给用户&#xff0c;但是很大程度上损失了用户体验&#xff1b; …

list 简化版模拟实现

1ListNode template<class T>struct ListNode{public:ListNode(const T& x T()):_next(nullptr), _prev(nullptr), _data(x){}//private://共有可访问ListNode<T>* _next;ListNode<T>* _prev;T _data;}; 实现iterator对Node*的封装 实现运算符重载 vo…

万字长文深入理解Docker镜像分层原理、容器数据卷、网络通信架构(Docker系列第2章,共3章)

镜像分层的简单直观体现 在执行docker pull时&#xff0c;会发现多个Pull complete 字样&#xff0c;就能体现分层&#xff0c;如果是一个文件&#xff0c;只会有一个Pull complete 。 docker pull redis Using default tag: latest latest: Pulling from library/redis a2ab…

算法中的复杂度(先做个铺垫)

文章目录 定义与分类时间复杂度概念大O的渐进表示法举例情况注意内涵 空间复杂度最优解 定义与分类 复杂度&#xff1a;衡量算法效率的标准时间效率&#xff1a;衡量这个算法的运行速度&#xff0c;也就是我们常说的时间复杂度空间效率&#xff1a;衡量这个算法所需要的额外空…

ChatGPT 专属指南:利用ChatGPT提升论文写作效率

ChatGPT无限次数:点击直达 ChatGPT 专属指南&#xff1a;利用ChatGPT提升论文写作效率 引言 随着人工智能技术的不断发展&#xff0c;如今许多工具被开发出来&#xff0c;以帮助人们更高效地进行各种工作。其中&#xff0c;ChatGPT作为一个强大的语言生成模型&#xff0c;不仅…

分布式结构化数据表Bigtable

文章目录 设计动机与目标数据模型行列时间戳 系统架构主服务器Chubby作用子表服务器SSTable结构子表实际组成子表地址组成子表数据存储及读/写操作数据压缩 性能优化局部性群组&#xff08;Locality groups&#xff09;压缩布隆过滤器 Bigtable是Google开发的基于GFS和Chubby的…

云计算:Linux 部署 OVN 集群

目录 一、实验 1.环境 2.Linux 部署 OVN 集群&#xff08;中心端&#xff09; 3.Linux 部署 OVN 集群&#xff08;业务端1&#xff09; 4.Linux 部署 OVN 集群&#xff08;业务端2&#xff09; 4.OVN 中心端 连接数据库 5.OVN 业务端1 加⼊控制器 6.OVN 业务端2 加⼊控…

【uniapp】初始化项目

初始化uniapp项目 创建 Vue3/Vite 工程 # 创建以 javascript 开发的工程 npx degit dcloudio/uni-preset-vue#vite my-vue3-project # 创建以 typescript 开发的工程 npx degit dcloudio/uni-preset-vue#vite-ts my-vue3-project 如果报错&#xff0c;或者网络问你等无法…

强大的压缩和解压缩工具 Keka for Mac

Keka for Mac是一款功能强大的压缩和解压缩工具&#xff0c;专为Mac用户设计。它支持多种压缩格式&#xff0c;包括7z、Zip、Tar、Gzip和Bzip2等&#xff0c;无论是发送电子邮件、备份文件还是节省磁盘空间&#xff0c;Keka都能轻松满足用户需求。 这款软件的操作简单直观&…

Tesserocr 的安装步骤

Tesserocr 的安装 OCR&#xff0c;即 Optical Character Recognition&#xff0c;光学字符识别。是指通过扫描字符&#xff0c;然后通过其形状将其翻译成电子文本的过程。那么对于图形验证码来说&#xff0c;它都是一些不规则的字符&#xff0c;但是这些字符确实是由字符稍加扭…

数据结构与算法——20.B-树

这篇文章我们来讲解一下数据结构中非常重要的B-树。 目录 1.B树的相关介绍 1.1、B树的介绍 1.2、B树的特点 2.B树的节点类 3.小结 1.B树的相关介绍 1.1、B树的介绍 在介绍B树之前&#xff0c;我们回顾一下我们学的树。 首先是二叉树&#xff0c;这个不用多说&#xff…

Linux的文件操作中的静态库的制作

Linux操作系统支持的函数库分为&#xff1a; 静态库&#xff0c;libxxx.a&#xff0c;在编译时就将库编译进可执行程序中。 优点&#xff1a;程序的运行环境中不需要外部的函数库。 缺点&#xff1a;可执行程序大 &#xff08;因为需要 编译&#xff09; 动态库&#xff0c…