数据结构与算法——20.B-树

这篇文章我们来讲解一下数据结构中非常重要的B-树。

目录

1.B树的相关介绍

1.1、B树的介绍

1.2、B树的特点

2.B树的节点类

3.小结


1.B树的相关介绍

1.1、B树的介绍

在介绍B树之前,我们回顾一下我们学的树。

首先是二叉树,这个不用多说,然后为了查找的效率,我们提出了搜索二叉树(或者称为二叉搜索树),就是节点类加个key值,然后左边小右边大的那个。然后为了避免极端情况的出现,就是二叉搜索树节点集中在一侧的情况,我们提出了平衡二叉树,就是带自旋的,可以左旋或者右旋的,高度差小于1的那种,平衡二叉树里面有AVL树和红黑树两种实现方式,注意,平衡二叉树是在二叉搜索树的基础上提出的,所以平衡二叉树也叫平衡二叉搜索树

下面介绍一下B树。

B-树是一种自平衡的多路查找树,注意: B树就是B-树,"-"是个连字符号,不是减号 。

在大多数的平衡查找树(Self-balancing search trees),比如 AVL树 和红黑树,都假设所有的数据放在主存当中。那为什么要使用 B-树呢(或者说为啥要有 B-树呢)?要解释清楚这一点,我们假设我们的数据量达到了亿级别,主存当中根本存储不下,我们只能以块的形式从磁盘读取数据,与主存的访问时间相比,磁盘的 I/O 操作相当耗时,而提出 B-树的主要目的就是减少磁盘的 I/O 操作

大多数平衡树的操作(查找、插入、删除,最大值、最小值等等)需要 O(ℎ)次磁盘访问操作,其中 ℎ 是树的高度。但是对于 B-树 而言,树的高度将不再是log(n)(n为数中节点的个数),而是一个我们可控的高度 ℎ (通过调整 B-树中结点所包含的键【你也可以叫做数据库中的索引,本质上就是在磁盘上的一个位置信息】的数目,使得 B-树的高度保持一个较小的值)一般而言,B-树的结点所包含的键的数目和磁盘块大小一样,从数个到数千个不等。由于B-树的高度 h 可控(一般远小于log(n)),所以与 AVL 树和红黑树相比,B-树的磁盘访问时间将极大地降低。

我们之前谈过红黑树与AVL树相比较,红黑树更好一些,这里我们将红黑树与B-树进行比较,并以一个例子对上面一段的内容进行解释。

假设我们现在有 838,8608 条记录,对于红黑树而言,树的高度 ℎ=log⁡(838,8608)=23 ,也就是说树的高度为23,也就是说如果要查找到叶子结点需要 23 次磁盘 I/O 操作;但是 B-树,情况就不同了,假设每一个结点可以包含 8 个键(当然真实情况下没有这么平均,有的结点包含的键可能比8多一些,有些比 8 少一些),那么整颗树的高度将最多 8 ( log8⁡(838,8608)=7.8 ) 层,也就意味着磁盘查找一个叶子结点上的键的磁盘访问时间只有 8 次,这就是 B-树提出来的原因所在。

1.2、B树的特点

下面讲一下B树的特点

在讲B树的特点之前,我们先来了解几个概念

度:degree 指树中节点的孩子数

阶:order 指所有节点中孩子数最大值

B树的特点:

  1. 每个节点最多有m个孩子,其中m称为B-树的阶;(孩子数目的上限)
  2. 除根节点和叶子节点外,其他节点至少有 ceil(m/2) (阶数除以2向上取整)个孩子,就是说B树中节点最大有m个孩子即阶个孩子,至少有 m/2(向上取整) 个孩子;(孩子数目的下限)
  3. 若根节点不是叶子节点,则至少有两个孩子;(根节点孩子数的下限)
  4. 所有叶子节点都在同一层;(B树是否平衡的前提条件)
  5. 每个非叶子节点由 n 个关键字(就是n个关键值,参考二叉搜索树中的关键值)和 n+1 个指针(就是n+1个孩子)组成,其中 ceil(m/2)-1 <= n <= m-1;
  6. 关键字按非降序排列(就是升序排列,和二叉树搜索相同),即节点中的第 i 个关键字大于等于第 i-1 个关键字;
  7. 指针P[ i ] 指向关键字值位于第 i 个关键字和第 i+1 个关键字之间的子树;

这些特性都要理解。看一下一个B树的实例:

2.B树的节点类

下面,我们来看一下B树的具体实现吧

package Tree;import java.util.Arrays;public class L5_BTree {//B数的节点类static class Node{int[] keys; //关键字,即关键值,排序用的Node[] children; //孩子,存孩子用的节点类数组int keyNumber; //有效关键字数目(就是真正存了几个关键字)boolean leaf = true; //是否是叶子节点int t; //最小度数(最小孩子数)//构造函数public Node(int t) { // t >= 2this.t = t;//手动设置最小孩子数this.children = new Node[2 * t];//最大孩子数是最小孩子数的二倍this.keys = new int[2 * t -1];//关键字的最大数量 是 最大孩子数-1}@Overridepublic String toString() {return Arrays.toString(Arrays.copyOfRange(keys,0,keyNumber));}//多路查找,就是我给你一个关键值,你返回这个关键值对应的节点Node get(int key){int i = 0; //设置个变量i,方便用来循环遍历while (i < keyNumber){ //节点中有关键字if (keys[i] == key){ //如果节点中的关键字 等于 我给出的关键字,那就返回这个关键字对应的节点return this;}if (keys[i] > key){ //如果关键字中的最小值都比给出的大,那就直接退出这个节点的循环了break;}i++; //变量i自增}//执行到这里,就是说当前节点的关键字一定比给出的大,或者说,超出索引了,即keys[i]>key 或 i == keyNumberif (leaf){ //如果是叶子节点,那就肯定没有孩子了return null;}//这种情况就是 i == keyNumber 了,就找这个节点所对应的孩子了(孩子数比节点关键值数多1)return children[i].get(key);}//写一个方法,向 keys 指定索引 index 处插入 keyvoid insertKey(int key, int index){for (int i = keyNumber-1; i >= index ; i--) {keys[i+1] = keys[i];}keys[index] = key;keyNumber++;}//写一个方法,向 children 指定索引 index 处插入 childvoid insertChild(Node child, int index){System.arraycopy(children,index,children,index+1,keyNumber);children[index] = child;}//移除指定index处的keyint removeKey(int index){int t = keys[index];System.arraycopy(keys,index+1,keys,index,--keyNumber-index);return t;}//移除最左边的keyint removeLeftmostKey(){return removeKey(0);}//移除最右边的keyint removeRightmostKey(){return removeKey(keyNumber-1);}//移除指定index处的childNode removeChild(int index){Node node = children[index];children[index] = null;return children[index];}//移除最左边的childNode removeLeftmostChild(){return removeChild(0);}//移除最右边的childNode removeRightmostChild(){return removeChild(keyNumber);}//返回index孩子处左边的兄弟Node childLeftSibling(int index){return index > 0 ? children[index-1]:null;}//返回index孩子处右边的兄弟Node childRightSibling(int index){return index == keyNumber ? null : children[index+1];}//复制当前节点的所有key和child到targetvoid moveToTarget(Node target){int start = target.keyNumber;if (!leaf){for (int i = 0; i <= keyNumber; i++) {target.children[start+i] = children[i];}}for (int i = 0; i < keyNumber; i++) {target.keys[target.keyNumber++] = keys[i];}}}Node root; //定义一个根节点int t; //树中节点的最小度数(就是一个节点的最小孩子数,根节点叶子节点除外)final int MIN_KEY_NUMBER;//最小关键字的数量final int MAX_KEY_NUMBER;//最大关键字的数量//无参构造,最小度数默认值为2public L5_BTree() {this(2);}//有参构造public L5_BTree(int t) {this.t = t;root = new Node(t);//new出根节点,并给出根节点最小度数MIN_KEY_NUMBER = t-1;MAX_KEY_NUMBER = 2*t-1;}//判断关键字中是否存在指定关键字对应的节点public boolean contains(int key){return root.get(key) != null;}//新增一个关键字/**描述一下流程吧* 你构造一颗B树,给定了最小度数,那么最小关键字数、最大关键字数、阶数也就都定了* 你开始往节点中插入关键值,一开始没满,你继续插入* 当插入的关键字数等于最大关键字数时,这个节点就要分裂了,即将自身的关键字分出去,变为孩子节点* 然后你再插入,它就会按照关键字的顺序去选位置,* 如果找到位置了,是叶子节点,那么就直接插入(当然超过MAX_KEY_NUMBER就分裂一下)* 如果恰好发现一个非叶子节点里面也有位置,那么应该先搜索一下这个节点的孩子,然后再进行判断插在哪里* 当某个节点的关键字数再满,那这个树就再分裂一次* */public void put(int key){doPut(root,key,null,0);}//递归的函数private void doPut(Node node,int key,Node parent,int index){int i = 0;while (i < node.keyNumber){if (node.keys[i] == key){return; //更新逻辑}if (node.keys[i] > key){break; //找到插入位置,记为i}i++;}if (node.leaf){node.insertKey(key,i);//可能到达上限}else {doPut(node.children[i],key,node,i);//可能到达上限}if (node.keyNumber == MAX_KEY_NUMBER){split(node,parent,index);}}//分裂函数/*** left:要分裂的节点* parent:分裂节点的父节点* index:分裂节点是第几个孩子* */private void split(Node left, Node parent, int index){if (parent == null){//分裂的是根节点Node newRoot = new Node(t);newRoot.leaf = false;newRoot.insertChild(left,0);this.root = newRoot;parent = newRoot;}//1.创建right节点,把left中t之后的key和child移动过去Node right = new Node(t);right.leaf = left.leaf;System.arraycopy(left.keys,t,right.keys,0,t-1);//分裂节点是非叶子节点的情况if (!left.leaf){System.arraycopy(left.children,t,right.children,0,t);}right.keyNumber = t-1;left.keyNumber = t-1;//2.中间的key(t-1处)插入到父节点中int mid = left.keys[t-1];parent.insertKey(mid,index);//3.right节点作为父节点的孩子parent.insertChild(right,index+1);}//删除一个关键字public void remove(int key){doRemove(null,root,0,key);}private void doRemove(Node parent,Node node,int index,int key){int i = 0;while (i < node.keyNumber){if (node.keys[i] >= key){break;}i++;}//找到了,代表待删除key的索引//没找到,表示到第 i 个孩子里面继续查找if (node.leaf){if(!found(node, key, i)){//case1return;}else {//case2node.removeKey(i);}}else {if(!found(node, key, i)){//case3doRemove(node,node.children[i],i,key);}else {//case4Node s = node.children[i+1];while (!s.leaf){s = s.children[0];}int skey = s.keys[0];node.keys[i] = skey;doRemove(node,node.children[i+1],i+1,skey);}}if (node.keyNumber < MIN_KEY_NUMBER){//调整平衡 case5 and case6balance(parent,node,index);}}private void balance(Node parent, Node x, int i){//case6 根节点if (x == root){if (root.keyNumber == 0 && root.children[0] != null){root = root.children[0];}return;}Node left = parent.childLeftSibling(i);Node right = parent.childRightSibling(i);if (left != null && left.keyNumber > MAX_KEY_NUMBER){//case5-1 左边富裕 右旋//把父节点中前驱key旋转下来x.insertKey(parent.keys[i-1],0);if (!left.leaf){//left中最大的孩子换爹x.insertChild(left.removeRightmostChild(),0);}//left中最大的key旋转上去parent.keys[i-1] = left.removeRightmostKey();return;}if (right != null && right.keyNumber > MAX_KEY_NUMBER){//case5-2 右边富裕 左旋//把父节点中后继key旋转下来x.insertKey(parent.keys[i],x.keyNumber);//right中最小的孩子换爹if (!right.leaf){x.insertChild(right.removeLeftmostChild(),x.keyNumber+1);}//right中最小的key旋转上去parent.keys[i] = right.removeLeftmostKey();return;}//case5-3 两边都不富裕 向左合并if(left != null){//向左兄弟合并parent.removeChild(i);left.insertKey( parent.removeKey(i-1), left.keyNumber);x.moveToTarget(left);}else {//自己合并parent.removeChild(i+1);x.insertKey(parent.removeKey(i),x.keyNumber );right.moveToTarget(x);}}private boolean found(Node node, int key, int i) {return i < node.keyNumber && node.keys[i] == key;}}

为了对应代码中插入和删除的逻辑思路,下面给出两张图来看一下。

节点中插入key值后的节点分裂展示图:

在节点中删除key的6种情况展示图(删除的是某个节点的key):

3.小结

说实话,我感觉这东西挺难的,写完之后脑瓜子都嗡嗡的。没有在纸上画图,单靠脑子想,我是肯定写不出来的,所以我的建议是:一定一定一定要画图,一定一定一定要看着图对着代码来一步一步的走,一定一定一定要看图!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux的文件操作中的静态库的制作

Linux操作系统支持的函数库分为&#xff1a; 静态库&#xff0c;libxxx.a&#xff0c;在编译时就将库编译进可执行程序中。 优点&#xff1a;程序的运行环境中不需要外部的函数库。 缺点&#xff1a;可执行程序大 &#xff08;因为需要 编译&#xff09; 动态库&#xff0c…

Spring Cloud学习笔记:Eureka集群搭建样例

这是本人学习的总结&#xff0c;主要学习资料如下 - 马士兵教育 1、项目架构2、Dependency3、项目启动类4、application.yml5、启动项目 1、项目架构 因为这是单机模拟集群搭建&#xff0c;为了方便管理就都放在了一个项目中。这次准备搭建三个项目server1, server2, server3 …

常见的垃圾回收算法

文章目录 1. 标记清除算法2. 复制算法3. 标记整理算法4. 分代垃圾回收算法 1. 标记清除算法 核心思想&#xff1a; 标记阶段&#xff0c;将所有存活的对象进行标记。Java中使用可达性分析算法&#xff0c;从GC Root开始通过引用链遍历出所有存活对象。清除阶段&#xff0c;从…

webrtc中的Track,MediaChannel,MediaStream

文章目录 Track,MediaChannel,MediaStream的关系MediaStream的创建流程创建VideoChannel的堆栈创建VideoStream的堆栈 sdp中媒体参数信息的映射sdp中媒体信息参数设置体系参数设置流程参数映射体系 Track,MediaChannel,MediaStream的关系 Audio/Video track&#xff0c;MediaC…

[每周一更]-第93期:探索大型生成式聊天工具:从ChatGPT到未来

随着人工智能技术的不断进步&#xff0c;生成式聊天工具正逐渐成为人们日常生活中的一部分。这些工具利用深度学习技术和大规模语言模型的强大能力&#xff0c;能够与用户进行自然、流畅的对话&#xff0c;为我们提供了更加智能和个性化的交流体验。 ChatGPT&#xff1a;开启生…

基于RT-Thread(RTT)的BMP280气压计驱动(I2C通信)

前言 本文基于RTT操作系统使用STM32F401RET6驱动BMP280气压计模块&#xff0c;使用I2C协议通信 一、新建工程 二、添加软件包 三、添加这个包 四、打开CubeMX 五、配置时钟源&#xff0c;使用外部晶振 六、配置串行下载口 七、打开I2C&#xff0c;我这里使用的是I2C2&#x…

LabVIEW直流稳定电源自动化校准系统

LabVIEW直流稳定电源自动化校准系统 直流稳定电源正向着智能化、高精度、多通道、宽量程的方向发展。基于LabVIEW开发环境&#xff0c;设计并实现了一种直流稳定电源自动化校准系统&#xff0c;以提升校准过程的整体效能&#xff0c;实现自动化设备替代人工进行电源校准工作。…

【opencv】示例-stiching.cpp 图像拼接

#include "opencv2/imgcodecs.hpp" // 导入opencv图像编码功能库 #include "opencv2/highgui.hpp" // 导入opencv高层用户界面功能库 #include "opencv2/stitching.hpp" // 导入opencv图像拼接功能库#include <iostream> // 导入输入输出…

PyQt5

Qt是基于C实现的GUI,而PyQt就是用python调用Qt. PyQt中有很多的功能模块,开发最常用的模块功能主要有3个 1) QtCore:包含核心的非GHI的功能,主要和时间,文件与文件夹,各种数据,流,URLs,进程与线程一起使用 2) QtGUi:包含窗口系统,事件处理,2D图像,基本绘画,字体和文字类 3)…

详解构造函数

前言 希望这篇文章是有意义的&#xff0c;能够帮助初学者理清构造函数的概念&#xff0c;关系及误区。首先定义一个日期类&#xff0c;借助日期类讲解构造函数。 class Date {public:void Init(int year, int month, int day) //初始化数据的方法{_year year;_month month…

Ubuntu快捷安装MySQL

更新包列表 sudo apt update 安装mysql sudo apt install mysql-server 启动mysql // 启动mysql sudo service mysql start// 关闭mysql sudo service mysql stop// 重启mysql sudo service mysql restart 连接mysql // 初始安装无密码&#xff0c;直接连接即可&#xf…

【opencv】示例-train_HOG.cpp 训练和测试基于支持向量机(SVM)的行人检测器

#include "opencv2/imgproc.hpp" // 包含OpenCV图像处理头文件 #include "opencv2/highgui.hpp" // 包含OpenCV高层GUI&#xff08;图形用户界面&#xff09;头文件 #include "opencv2/ml.hpp" // 包含OpenCV机器学习模块头文件 #includ…

数据结构初阶:二叉树(二)

二叉树链式结构的实现 前置说明 在学习二叉树的基本操作前&#xff0c;需先要创建一棵二叉树&#xff0c;然后才能学习其相关的基本操作。由于现在对二叉树结构掌握还不够深入&#xff0c;为了降低学习成本&#xff0c;此处手动快速创建一棵简单的二叉树&#xff0c;快速进入二…

二、Flask会话技术和模板语言

Cookie Session # views.py: 路由 视图函数 import datetimefrom flask import Blueprint, render_template, request, redirect, session from .models import *# 蓝图 blue Blueprint(user, __name__)# 首页 可以写两个路由&#xff0c;都是访问同一个函数 blue.route(/) b…

【数据结构】泛型(分享重点)

什么是泛型&#xff1f; 泛型就是适用于许多许多类型&#xff0c;对类型参数化。 怎么创建一个泛型呢 class 泛型类名称<类型形参列表> { // 这里可以使用类型参数 } class ClassName<T1, T2, ..., Tn> { } class 泛型类名称<类型形参列表> extends 继承类…

微服务之LoadBalancer负载均衡服务调用

一、概述 1.1什么是负载均衡 LB&#xff0c;既负载均衡&#xff08;Load Balancer&#xff09;,是高并发、高可用系统必不可少的关键组件&#xff0c;其目标是尽力将网络流量平均分发到多个服务器上&#xff0c;以提高系统整体的响应速度和可用性。 负载均衡的主要作用 高并发…

回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测 目录 回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab基于RIME-SVR霜冰算法优化支持向量机的数…

MySQL优化慢SQL的6种方式

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《mysql经验总结》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途 目录 写在前面 优化思路 优化方法 1.避免查询不必要的列 2.分页优化 3.索引优化 4.JOIN优化 5.排序优化 6.UNION 优化…

无线网络2.4和5G的区别

无线网络2.4和5的区别 无线网络2.4GHz和5GHz的主要区别在于频率、覆盖范围、传输速度、干扰能力和穿透性。以下是详细介绍&#xff1a;12 频率不同。2.4GHz的频率较低&#xff0c;而5GHz的频率较高。频率越低&#xff0c;信号在传播过程中的损失越小&#xff0c;因此覆盖范围…

linux学习:文件属性

在操作文件的时候&#xff0c;经常需要获取文件的属性&#xff0c;比如类型、权限、大小、所有者等等&#xff0c; 这些信息对于比如文件的传输、管理等是必不可少的&#xff0c;而这些信息 这三个函数的功能完全一样&#xff0c;区别是&#xff1a;stat( )参数是一个文件的名字…