C语言:关于动态内存管理我到底应该懂些什么?看了我这篇你就通透了。

1.动态内存的分配

在我们初学C语言的时候,我们经常用一下几种方式申请内存空间。

int a = 10;//在栈空间上开辟4个字节存放这个值。
char arr[10] = {1,2,3,4,5,6,7,8,9,10};//在栈空间上开辟10个字节的连续空间。

但是上述开辟空间有两个特点
1.空间开辟大小是固定的,一旦确定了,在栈空间是无法修改的。
2.数组在申明的时候,必须指定数组的长度,数组空间一旦确定了大小不能调整。

而上述的情况在程序运行的时候已经确定大小了,我们不想要这样,所以C语言引入了动态内存开辟,让程序员自己可以申请和释放空间。
而动态内存开辟可以让程序员自己主动申请空间。

2.malloc和free

2.1 malloc

C语言提供了一个动态内存开辟函数

void* malloc (size_t size);
//无符号整型需要size_t返回类型。

这个函数是像内存申请一块连续可用的空间,并返回指向这块空间的指针。
1.如果开辟成功,则返回一个指向开辟好空间的指针。
2.如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
3.返回值的类型是void*,所以malloc函数并不知道开辟空间的类型,具体在使用者自己来决定。
4.如果参数size为0.malloc的行为是标准未定义的,取决于编译器。

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int main()
{int* p = (int*)malloc(5*sizeof(int));//20个字节存放5个整数,存放在p这个指针变量中//类型是int*,malloc本来的类型是void*,现在强转为int*,5个元素,20个字节。if (p == NULL){perror("malloc");return 1;}int i = 0;for (i = 0; i < 5; i++){printf("%d " ,* (p + i));}free(p);p = NULL;return 0;
}

2.2 free

函数free动态内存的释放和回收

void free (void * ptr);

free函数用来释放动态开辟的内存。
1.如果参数ptr指向的空间不是动态开辟的,那free函数的行为是未定义的。//比如说int a = 10;
2.如果参数ptr是NUll指针,则函数什么事都不做。//ptt = NULL;
3.malloc 和 free都声明在stdlib.h头文件中。

#include <stdio.h>
#include <stdlib.h>
int main()
{int num = 0;int arr[] = { 0,1,2,3,4,5,6,7,8,9};int* ptr = NULL;ptr = (int*)malloc(num * sizeof(int));if (NULL != ptr)//判断ptr指针是否为空{int i = 0;for (i = 0; i < num; i++){*(ptr + i) = 0;}}free(ptr);//释放ptr所指向的动态内存ptr = NULL;//必须置为空指针,否则这个指针会变成野指针。//如果在后面不想使用,可以用free释放,如果没有使用free释放,当程序运行结束的时候//也会让操作系统回收的。return 0;
}

3.calloc和realloc

3.1 calloc

C语言还提供了一个函数叫calloc,calloc函数也用来动态内存分配。

void* calloc (size_t num, size_t size);

1.函数的功能是为num个大小为size的元素开辟一块空间,并且把空间的每个字节初始化为0。
2.与函数malloc的区别只在于calloc会在返回地址之前把申请的空间的每个字节初始化为全0,而malloc不会,它会生成一些随机数。

#include <stdio.h>
#include <stdlib.h>
int main()
{int *p = (int*)calloc(10, sizeof(int));if(NULL != p){int i = 0;for(i=0; i<10; i++){printf("%d ", *(p+i));}}free(p);p = NULL;return 0;}

如果我们相对申请的内存空间要求初始化,那么calloc函数无疑是很好的选择。

3.2 realloc

• realloc函数的出现让动态内存管理更加灵活。
• 有时会我们发现过去申请的空间太⼩了,有时候我们⼜会觉得申请的空间过⼤了,那为了合理的时 候内存,我们⼀定会对内存的⼤⼩做灵活的调整。那 realloc 函数就可以做到对动态开辟内存⼤ ⼩的调整。

简而言之,当我们申请空间后,想要调整空间的内存大小,那么realloc函数就可以做到动态开辟内存大小的调整。

void* realloc (void* ptr, size_t size);

• ptr 是要调整的内存地址
• size 调整之后新⼤⼩
• 返回值为调整之后的内存起始位置。
•这个函数调整原内存空间⼤⼩的基础上,还会将原来内存中的数据移动到 新的空间。
• realloc在调整内存空间的是存在两种情况:
◦ 情况1:原有空间之后有⾜够⼤的空间
◦ 情况2:原有空间之后没有⾜够⼤的空间

int main()
{int* ptr = (int*)malloc(20);if (ptr != NULL){int* tmp = realloc(ptr, 40);}return 0;
}

image.png
image.png

情况1
当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发⽣变化。
情况2
当是情况2 的时候,原有空间之后没有⾜够多的空间时,扩展的⽅法是:在堆空间上另找⼀个合适⼤⼩ 的连续空间来使⽤。这样函数返回的是⼀个新的内存地址。

1.在堆区的内存中找一个新的空间,并且新的大小要求
2.会原来空间的数据拷贝一份到新的空间
3.释放旧的空间
4.返回新的内存空间的起始地址

realloc函数的使⽤就要注意⼀些。

#include <stdio.h>
#include <stdlib.h>
int main()
{int *ptr = (int*)malloc(100);if(ptr != NULL){//业务处理}else{return 1; }//扩展容量//代码1 - 直接将realloc的返回值放到ptr中ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中int*p = NULL;p = realloc(ptr, 1000);if(p != NULL){ptr = p;}//业务处理free(ptr);return 0;
}

4.常见的动态内存的错误

4.1对NULL指针的解引用操作

void test(){int *p = (int *)malloc(INT_MAX/4);*p = 20;//如果p的值是NULL,就会有问题。//*p = NULL;这是大错特错的,我们不能对空指针解引用。free(p)}

当程序试图解引用一个期望非空但是实际为空的指针时,会发生空指针解引用错误。对于空指针解引用可能会导致程序异常终止或拒绝服务。
空指针解引用是C/C++程序中较为普遍的内存缺陷类型。当指针指向无效的地址并且对其引用时。可能产生不可预见的错误,导师软件系统崩溃。空指针引用缺陷可能导致系统崩溃、拒绝服务诸多严重后果 。

4.2 对动态开辟空间的越界访问

void test(){int i = 0;int *p = (int *)malloc(10*sizeof(int));//我们这里申请了40个字节的空间if(NULL == p){exit(EXIT_FAILURE);}for(i=0; i<=10; i++){*(p+i) = i;//当i是10的时候越界访问,对(p+i)进行解引用会导致越界访问,因为p刚开始存放的是第一个元素的地址,不断进行数组遍历,当i=10,会发生空间越界访问。}free(p);}

4.3 对非动态开辟内存使用free释放

void test()
{int a = 10;int *p = &a;free(p);//ok?}1.如果参数ptr指向的空间不是动态开辟的,那free函数的行为是未定义的。//比如说int a = 10;

4.4 使用free释放一块动态内存的一部分

void test(){int *p = (int *)malloc(100);p++;free(p);//p不再指向动态内存的起始位置,p++了。}

4.5 对同一块动态内存多次释放

void test(){int *p = (int *)malloc(100);free(p);free(p);//重复释放}

4.6 动态开辟内存忘记释放(内存泄漏)

void test(){int *p = (int *)malloc(100);if(NULL != p){*p = 20;}}
int main(){test();while(1);}

忘记释放不再使⽤的动态开辟的空间会造成内存泄漏。
切记:动态开辟的空间⼀定要释放,并且正确释放。
有借有还,再借不难。

5.动态内存经典笔试题分析

5.1

void GetMemory(char *p){p = (char *)malloc(100);//动态内存开辟100个char类型的字节空间}
void Test(void){char *str = NULL;GetMemory(str);//为这个空指针申请100个大小字节空间strcpy(str, "hello world");printf(str);//hello world}

image.png

5.2

char *GetMemory(void){char p[] = "hello world";return p;}
void Test(void){char *str = NULL;str = GetMemory();printf(str);}

image.png

5.3

void GetMemory(char **p, int num){*p = (char *)malloc(num);}
void Test(void){char *str = NULL;GetMemory(&str, 100);strcpy(str, "hello");printf(str);}

image.png

5.4

void Test(void){char *str = (char *) malloc(100);strcpy(str, "hello");free(str);if(str != NULL){strcpy(str, "world");printf(str);}}

image.png

6.柔性数组

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。 C99 中,结构中的最后⼀个元素允许是未知⼤⼩的数组,这就叫做『柔性数组』成员。 例如:

typedef struct st_type
{int i;int a[0];//柔性数组成员,这个元素就是未知大小的数组。
}type_a;
typedef struct st_type
{int i;int a[];//柔性数组成员,不完全初始化大小不确定的数组。
}type_a;

6.1 柔性数组的特点

• 结构中的柔性数组成员前⾯必须⾄少⼀个其他成员
• sizeof 返回的这种结构⼤⼩不包括柔性数组的内存
• 包含柔性数组成员的结构⽤malloc ()函数进⾏内存的动态分配,并且分配的内存应该⼤于结构的⼤⼩,以适应柔性数组的预期⼤⼩。

typedef struct st_type
{int i;int a[0];//柔性数组成员
}type_a;
int main()
{printf("%d\n", sizeof(type_a));//输出的是4,在这里我们只计算i这个int类型的大小//所以说sizeof 返回的这种结构⼤⼩不包括柔性数组的内存。return 0;
}

6.2 柔性数组的使用

//代码1
#include <stdio.h>
#include <stdlib.h>
int main()
{
int i = 0;
type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));//业务处理p->i = 100;for(i=0; i<100; i++){p->a[i] = i;}free(p);return 0;
}
//这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

6.3 柔性数组的优势

#include <stdio.h>
#include <stdlib.h>
typedef struct st_type
{int i;int *p_a;
}type_a;
int main()
{type_a *p = (type_a *)malloc(sizeof(type_a));p->i = 100;p->p_a = (int *)malloc(p->i*sizeof(int));//业务处理for(i=0; i<100; i++){p->p_a[i] = i;}//释放空间free(p->p_a);p->p_a = NULL;free(p);p = NULL;return 0;
}

第⼀个好处是:

⽅便内存释放 如果我们的代码是在⼀个给别⼈⽤的函数中,你在⾥⾯做了⼆次内存分配,并把整个结构体返回给⽤ ⼾。⽤⼾调⽤free可以释放结构体,但是⽤⼾并不知道这个结构体内的成员也需要free,所以你不能 指望⽤⼾来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返 回给⽤⼾⼀个结构体指针,⽤⼾做⼀次free就可以把所有的内存也给释放掉。

第⼆个好处是:

这样有利于访问速度.
连续的内存有益于提⾼访问速度,也有益于减少内存碎⽚。(其实,我个⼈觉得也没多⾼了,反正你 跑不了要⽤做偏移量的加法来寻址)

拓展阅读必须读你会悟的
C语言结构体里的数组和指针

7.总结C/C++中程序内存区域的划分

栈区局部变量形式参数
堆区mallocfreecallocrealloc
静态区静态变量全局变量

image.png
C/C++程序内存分配的⼏个区域:

  1. 栈区(stack):在执⾏函数时,函数内局部变量的存储单元都可以在栈上创建,函数执⾏结束时 这些存储单元⾃动被释放。栈内存分配运算内置于处理器的指令集中,效率很⾼,但是分配的内 存容量有限。 栈区主要存放运⾏函数⽽分配的局部变量、函数参数、返回数据、返回地址等。
  2. 堆区(heap):⼀般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配⽅式类似于链表。
  3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
  4. 代码段:存放函数体(类成员函数和全局函数)的⼆进制代码

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/815336.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FJSP:袋鼠群优化(Kangaroo Swarm Optimization ,KSO)算法求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题 柔性作业车间调度问题&#xff08;Flexible Job Shop Scheduling Problem&#xff0c;FJSP&#xff09;&#xff0c;是一种经典的组合优化问题。在FJSP问题中&#xff0c;有多个作业需要在多个机器上进行加工&#xff0c;每个作业由一系列工序组成&a…

微服务之Consul 注册中心介绍以及搭建

一、微服务概述 1.1单体架构 单体架构&#xff08;monolithic structure&#xff09;&#xff1a;顾名思义&#xff0c;整个项目中所有功能模块都在一个工程中开发&#xff1b;项目部署时需要对所有模块一起编译、打包&#xff1b;项目的架构设计、开发模式都非常简单。 当项…

C++ | Leetcode C++题解之第22题括号生成

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<string> res; //记录答案 vector<string> generateParenthesis(int n) {dfs(n , 0 , 0, "");return res;}void dfs(int n ,int lc, int rc ,string str){if( lc n && rc n…

美团笔试复盘

昨天做了美团的笔试&#xff0c;现在复盘一下。 1、将数组按照绝对值大小排序 有道算法题解决思路需要将数组按照绝对值大小进行排序&#xff0c;我使用的是sort方法Comparator比较器实现的&#xff0c;这里记录一下&#xff1a; public static void main(String[] args) {In…

第二证券策略:股指预计维持震荡格局 关注汽车、工程机械等板块

第二证券指出&#xff0c;指数自今年2月份阶段低点反弹以来&#xff0c;3月份持续高位整理。进入4月份之后面对年报和一季报的双重财报发表期&#xff0c;预计指数短期保持高位整理概率比较大。前期缺乏成绩支撑的概念股或有回落的危险&#xff0c;主张重视成绩稳定、估值低、分…

【Leetcode】1702. 修改后的最大二进制字符串

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接&#x1f517; 给你一个二进制字符串 b i n a r y binary binary &#xff0c;它仅有 0 0 0 或者 1 1 1 组成。你可以使用下面的操作任意次对它进行修改&#xff1a; 操作 1 &#xff1a;如果…

Golang(一):基础、数组、map、struct

目录 hello world 变量 常量&#xff0c;iota 函数 init函数和导包过程 指针 defer 数组和动态数组 固定长度数组 遍历数组 动态数组 len 和 cap 截取 切片的追加 map 四种声明方式 遍历map 删除 查看键是否存在 结构体 声明 作为形参 方法 封装 继承…

[入门到放弃]设计模式-笔记

模块化设计 20240448 模块不包含数据&#xff0c;通过实例的指针&#xff0c;实现对实例的操作&#xff1b;唯一包含的数据是用于管理这些模块的侵入式链表模块只负责更具定义的数据结构&#xff0c;执行对应的逻辑&#xff0c;实现不同实例的功能&#xff1b; 参考资料 使用…

【热门话题】常见分类算法解析

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 常见分类算法解析1. 逻辑回归&#xff08;Logistic Regression&#xff09;2. 朴…

4.Godot图片素材的获取和编辑

游戏开发中经常遇到图片素材的需求 1. 图片素材的准备 术语&#xff1a;Sprite 精灵&#xff0c;游戏开发中指一张图片来源不明的图片&#xff0c;切勿在商业用途使用&#xff0c;以免引起版权风险。 1. 在学习阶段&#xff0c;可以百度或者从一些资源网站获取&#xff0c;这…

ViT-DeiT:用于乳腺癌组织病理图像分类的集成模型

两种预训练Vision Transformer模型的集成模型&#xff0c;即Vision Transformer和数据高效视觉Transformer&#xff08;Data-Efficient Image Transformer&#xff09;。此集成模型是一种软投票模型。 近年来&#xff0c;乳腺癌的分类研究主要集中在超声图像分类、活检数据分类…

QT常用控件

常用控件 控件概述QWidget 核⼼属性核⼼属性概览enabledgeometrywindowTitlewindowIconwindowOpacitycursorfonttoolTipfocusPolicystyleSheet 按钮类控件Push ButtonRadio ButtionCheck Box 显⽰类控件LabelLCD NumberProgressBarCalendar Widget 输⼊类控件Line EditText Edi…

AI领域的最新动态:大型语言模型的崛起、AI芯片竞争与创新应用

AI领域的最新动态&#xff1a;大型语言模型的崛起、AI芯片竞争与创新应 在最近的AI新闻中&#xff0c;有几个重要的发展值得关注&#xff1a; 1. **大型语言模型的发布和更新**&#xff1a; - Google在其Google Cloud Next活动上宣布&#xff0c;Gemini 1.5现已在180多个国家/…

(学习日记)2024.04.15:UCOSIII第四十三节:任务消息队列

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

# 达梦sql查询 Sql 优化

达梦sql查询 Sql 优化 文章目录 达梦sql查询 Sql 优化注意点测试数据单表查询 Sort 语句优化优化过程 多表关联SORT 优化函数索引的使用 注意点 关于优化过程中工具的选用&#xff0c;推荐使用自带的DM Manage&#xff0c;其它工具在查看执行计划等时候不明确在执行计划中命中…

MySQL 主从复制部署(8.0)

什么是主从数据库 主从数据库是一种数据库架构模式&#xff0c;通常用于提高数据库的性能、可用性和可伸缩性。 它包括两种类型的数据库服务器&#xff1a; 1&#xff09;主数据库&#xff08;Master&#xff09;&#xff1a;主数据库是读写数据的主要数据库服务器。所有写操…

前端小技巧之轮播图

文章目录 功能htmlcssjavaScript图片 设置了一点小难度&#xff0c;不理解的话&#xff0c;是不能套用的哦&#xff01;&#xff01;&#xff01; &#xff08;下方的圆圈与图片数量不统一&#xff0c;而且宽度是固定的&#xff09; 下次写一些直接套用的&#xff0c;不整这些麻…

SpringBoot配置优先级

配置优先级排序&#xff08;从高到低&#xff09; 1&#xff09;命令行参数 2&#xff09;java系统属性 3&#xff09;application.properties 4&#xff09;application.yaml 5&#xff09;application.ymlSpringBoot的系统属性配置和命令行参数配置 1、cmd端进行配置 1&am…

边缘计算网关究竟是什么呢?它又有什么作用呢?-天拓四方

在数字化时代&#xff0c;信息的传输与处理变得愈发重要&#xff0c;而其中的关键节点之一便是边缘计算网关。这一先进的网络设备&#xff0c;不仅扩展了云端功能至本地边缘设备&#xff0c;还使得边缘设备能够自主、快速地响应本地事件&#xff0c;提供了低延时、低成本、隐私…

基本的数据类型在16位、32位和64位机上所占的字节大小

1、目前常用的机器都是32位和64位的&#xff0c;但是有时候会考虑16位机。总结一下在三种位数下常用的数据类型所占的字节大小。 数据类型16位(byte)32位(byte)64位(byte)取值范围char111-128 ~ 127unsigned char1110 ~ 255short int / short222-32768~32767unsigned short222…