FJSP:袋鼠群优化(Kangaroo Swarm Optimization ,KSO)算法求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。

FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。

解决FJSP问题的方法包括启发式算法、精确算法和元启发式算法等。启发式算法通过一系列规则和策略来生成调度方案,常见的方法有遗传算法、模拟退火算法和禁忌搜索算法等。精确算法则通过穷举搜索或者动态规划等方法来找到最优解,但在实际应用中可能面临计算复杂度过高的问题。元启发式算法则结合了多种启发式算法和精确算法的优点,通过组合不同的方法来求解FJSP问题。
FJSP问题的难点主要体现在以下几个方面:

  1. 组合爆炸:FJSP问题中,每个工件都有多个工序需要完成,而每个工序都有多个可选的机器可以执行。这导致了组爆炸的问题,可能的调度方案数量非常庞,难以穷举所有可能性。

  2. 优化目标多样:FJSP问题通常有多个优化目标,如最小化总加权完成时间、最小化总延迟时间等。这些目标之间可能存在冲突,使找到一个全局最优解变得困难。

  3. 资源约束:FJSP问题中,每个机器在同一时间只能执行一个工序,且每个工序需要一定的时间和资源。这些资源约束增加了问题的复杂性,需要在满足约束条件的前提下进行调度。

  4. 实时性要求:在实际生产中,FJSP问题通常需要考虑实时性要求,即要求在有限的时间内生成一个可行的调度方案。这增加了问题的难度,需要在有限时间内找到一个较优的解。

柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

袋鼠群优化(Kangaroo Swarm Optimization ,KSO)是2024年提出的一种元启发式优化算法,其灵感来自于袋鼠的自然行为。
参考文献:
praveen kumar (2024). Kangaroo Swarm Optimization (KSO) (https://www.mathworks.com/matlabcentral/fileexchange/162231-kangaroo-swarm-optimization-kso)

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = KSO(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('KSO')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/815334.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务之Consul 注册中心介绍以及搭建

一、微服务概述 1.1单体架构 单体架构(monolithic structure):顾名思义,整个项目中所有功能模块都在一个工程中开发;项目部署时需要对所有模块一起编译、打包;项目的架构设计、开发模式都非常简单。 当项…

C++ | Leetcode C++题解之第22题括号生成

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<string> res; //记录答案 vector<string> generateParenthesis(int n) {dfs(n , 0 , 0, "");return res;}void dfs(int n ,int lc, int rc ,string str){if( lc n && rc n…

美团笔试复盘

昨天做了美团的笔试&#xff0c;现在复盘一下。 1、将数组按照绝对值大小排序 有道算法题解决思路需要将数组按照绝对值大小进行排序&#xff0c;我使用的是sort方法Comparator比较器实现的&#xff0c;这里记录一下&#xff1a; public static void main(String[] args) {In…

第二证券策略:股指预计维持震荡格局 关注汽车、工程机械等板块

第二证券指出&#xff0c;指数自今年2月份阶段低点反弹以来&#xff0c;3月份持续高位整理。进入4月份之后面对年报和一季报的双重财报发表期&#xff0c;预计指数短期保持高位整理概率比较大。前期缺乏成绩支撑的概念股或有回落的危险&#xff0c;主张重视成绩稳定、估值低、分…

【Leetcode】1702. 修改后的最大二进制字符串

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接&#x1f517; 给你一个二进制字符串 b i n a r y binary binary &#xff0c;它仅有 0 0 0 或者 1 1 1 组成。你可以使用下面的操作任意次对它进行修改&#xff1a; 操作 1 &#xff1a;如果…

Golang(一):基础、数组、map、struct

目录 hello world 变量 常量&#xff0c;iota 函数 init函数和导包过程 指针 defer 数组和动态数组 固定长度数组 遍历数组 动态数组 len 和 cap 截取 切片的追加 map 四种声明方式 遍历map 删除 查看键是否存在 结构体 声明 作为形参 方法 封装 继承…

[入门到放弃]设计模式-笔记

模块化设计 20240448 模块不包含数据&#xff0c;通过实例的指针&#xff0c;实现对实例的操作&#xff1b;唯一包含的数据是用于管理这些模块的侵入式链表模块只负责更具定义的数据结构&#xff0c;执行对应的逻辑&#xff0c;实现不同实例的功能&#xff1b; 参考资料 使用…

【热门话题】常见分类算法解析

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 常见分类算法解析1. 逻辑回归&#xff08;Logistic Regression&#xff09;2. 朴…

4.Godot图片素材的获取和编辑

游戏开发中经常遇到图片素材的需求 1. 图片素材的准备 术语&#xff1a;Sprite 精灵&#xff0c;游戏开发中指一张图片来源不明的图片&#xff0c;切勿在商业用途使用&#xff0c;以免引起版权风险。 1. 在学习阶段&#xff0c;可以百度或者从一些资源网站获取&#xff0c;这…

ViT-DeiT:用于乳腺癌组织病理图像分类的集成模型

两种预训练Vision Transformer模型的集成模型&#xff0c;即Vision Transformer和数据高效视觉Transformer&#xff08;Data-Efficient Image Transformer&#xff09;。此集成模型是一种软投票模型。 近年来&#xff0c;乳腺癌的分类研究主要集中在超声图像分类、活检数据分类…

QT常用控件

常用控件 控件概述QWidget 核⼼属性核⼼属性概览enabledgeometrywindowTitlewindowIconwindowOpacitycursorfonttoolTipfocusPolicystyleSheet 按钮类控件Push ButtonRadio ButtionCheck Box 显⽰类控件LabelLCD NumberProgressBarCalendar Widget 输⼊类控件Line EditText Edi…

AI领域的最新动态:大型语言模型的崛起、AI芯片竞争与创新应用

AI领域的最新动态&#xff1a;大型语言模型的崛起、AI芯片竞争与创新应 在最近的AI新闻中&#xff0c;有几个重要的发展值得关注&#xff1a; 1. **大型语言模型的发布和更新**&#xff1a; - Google在其Google Cloud Next活动上宣布&#xff0c;Gemini 1.5现已在180多个国家/…

(学习日记)2024.04.15:UCOSIII第四十三节:任务消息队列

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

# 达梦sql查询 Sql 优化

达梦sql查询 Sql 优化 文章目录 达梦sql查询 Sql 优化注意点测试数据单表查询 Sort 语句优化优化过程 多表关联SORT 优化函数索引的使用 注意点 关于优化过程中工具的选用&#xff0c;推荐使用自带的DM Manage&#xff0c;其它工具在查看执行计划等时候不明确在执行计划中命中…

MySQL 主从复制部署(8.0)

什么是主从数据库 主从数据库是一种数据库架构模式&#xff0c;通常用于提高数据库的性能、可用性和可伸缩性。 它包括两种类型的数据库服务器&#xff1a; 1&#xff09;主数据库&#xff08;Master&#xff09;&#xff1a;主数据库是读写数据的主要数据库服务器。所有写操…

前端小技巧之轮播图

文章目录 功能htmlcssjavaScript图片 设置了一点小难度&#xff0c;不理解的话&#xff0c;是不能套用的哦&#xff01;&#xff01;&#xff01; &#xff08;下方的圆圈与图片数量不统一&#xff0c;而且宽度是固定的&#xff09; 下次写一些直接套用的&#xff0c;不整这些麻…

SpringBoot配置优先级

配置优先级排序&#xff08;从高到低&#xff09; 1&#xff09;命令行参数 2&#xff09;java系统属性 3&#xff09;application.properties 4&#xff09;application.yaml 5&#xff09;application.ymlSpringBoot的系统属性配置和命令行参数配置 1、cmd端进行配置 1&am…

边缘计算网关究竟是什么呢?它又有什么作用呢?-天拓四方

在数字化时代&#xff0c;信息的传输与处理变得愈发重要&#xff0c;而其中的关键节点之一便是边缘计算网关。这一先进的网络设备&#xff0c;不仅扩展了云端功能至本地边缘设备&#xff0c;还使得边缘设备能够自主、快速地响应本地事件&#xff0c;提供了低延时、低成本、隐私…

基本的数据类型在16位、32位和64位机上所占的字节大小

1、目前常用的机器都是32位和64位的&#xff0c;但是有时候会考虑16位机。总结一下在三种位数下常用的数据类型所占的字节大小。 数据类型16位(byte)32位(byte)64位(byte)取值范围char111-128 ~ 127unsigned char1110 ~ 255short int / short222-32768~32767unsigned short222…

Go程序设计语言 学习笔记 第十一章 测试

1949年&#xff0c;EDSAC&#xff08;第一台存储程序计算机&#xff09;的开发者莫里斯威尔克斯在他的实验室楼梯上攀登时突然领悟到一件令人震惊的事情。在《一位计算机先驱的回忆录》中&#xff0c;他回忆道&#xff1a;“我突然完全意识到&#xff0c;我余生中的很大一部分时…