YOLOv5实战记录06 Gradio搭建Web GUI

个人打卡,慎看。

指路大佬:【手把手带你实战YOLOv5-入门篇】YOLOv5 Gradio搭建Web GUI_哔哩哔哩_bilibili

先放一张效果图:

零、虚拟环境激活

  1. 之前up说要激活环境时,我没当回事儿,今天突然想,激活环境然后安装包,和不激活环境安装包,有什么区别。
  2. conda activate yolov5,原来这个yolov5就是D:\anaconda\envs 下的文件夹所承载的环境。我尝试了这个文件夹下其他的名字。比如有个文件夹叫VIKI, conda activate VIKI,果然也激活了VIKI,我之前一直以为因为项目是关于yolov5的,所以这个参数才是Yolov5,原来这个就是一开始给环境的命名。激活环境后,不管当前目录是什么,安装包都会安装到那个位置。
  3. 我尝试了import site  print(site.getsitepackages()) ,在两种情况下,激活Yolov5环境时,输出了D:\anaconda\envs\yolov5,d:\anaconda\envs\yolov5\lib\site-packages ; 激活VIKI环境时,输出了D:\anaconda\envs\VIKI ,D:\anaconda\envs\VIKI\lib\site-packages
  4. 所以如果激活了yolov5环境,那么下载的包会下载到d:\anaconda\envs\yolov5\lib\site-packages 这个位置。
  5. 而我设置的python.exe是d:\anaconda\python.exe, 如果不激活环境,包会下载到d:\anaconda\lib\site-packages,
  6. 又遇到了一个问题,既然anaconda\lib\site-packages里已经有很多包了,之后在这儿pip install不就行了吗,为什么还要新建一个虚拟环境。 主要解决的就是不同工程代码要求的包,版本可能不同。

可见,我对虚拟环境的概念还是不熟悉。于是学习了虚拟环境相关的知识。

conda虚拟环境

conda env list 
#列出conda所有的环境conda activate mingzi
#激活环境mingzipip list
#看该环境下的包#每个环境的包都可以定制,这主要解决了不同工程对应包版本不同的问题。conda create -n hahaha python=3.8
#创建一个叫做hahaha的环境,指定python版本为3.8conda env remove -n hahaha --all
# 删除叫做hahaha的环境。

如何更换环境?

  1. 打开settings,找到python interpreter ,点击add interpreter,点击add local interpreter;
  2. 点击conda environment, 选择using existing environment, 选择yolov5

一、配置环境

  • pip install gradio 

运行model=torch.hub.load("./","custom",path="runs/train/exp2/weights/best.pt",source="local")这句代码又遇到了问题。卡在了Downloading scipy-1.10.1-cp38-cp38-win_amd64.whl (42.2 MB)

因为我换了个环境,上次用的是d:\anaconda\lib\site-packages下的环境,这次是yolov5虚拟环境。然而上次运行这句代码遇到的报错卡在了Downloading torch……,解决办法也是自己pip install torch。

于是推测这次的问题也是在卡住的这句downloading退出,自己下载该包。

  • pip install scipy

这次终于好了。

所以如果卡在了downloading某个包上,自己退出,单独pip install这个包即可。

二、搭建初始样式

运行后点击出现的链接。

import torch
import gradio as grmodel=torch.hub.load("./","custom",path="runs/train/exp2/weights/best.pt",source="local")gr.Interface(inputs=["image"],outputs=["image"],fn= lambda img:model(img).render()[0], ).launch()# inputs=["image"] 映射,组件调用。实际上调用了gr.Image()

效果:

三、完善界面

我们继续完善页面,添加标题,添加conf-thres 和iou-thres两个参数的滚动条,代码如下:

import torch
import gradio as grmodel=torch.hub.load("./","custom",path="runs/train/exp2/weights/best.pt",source="local")title="基于Gradio的YOLOv5演示项目" #标题
desc="这是一个基于YOLOv5的项目,非常简洁。" #描述def det_image(img,conf_thres,iou_thres):model.conf=conf_thres   #conf代表置信度阈值,数值越低框越多。model.iou=iou_thres  #代表IOU阈值,数值越低框越少,越高框越多。return model(img).render()[0]gr.Interface(inputs=["image","slider","slider"],outputs=["image"],fn=det_image,title=title,description=desc).launch()#inputs=["image"] 映射,组件调用。实际上调用了gr.Image()
#创建slider时,并没有显式绑定。这是因为fn会绑定input和output input中的三个参数,对应了det_image的三个传参。

现在这样有个问题,conf和iou是0-100之间的数,我们需要设置成0-1,可以直接给

    model.conf=conf_thres/100
    model.iou=iou_thres/100 

但是这种方法不够好,我们可以改善组件本身。 

改善如下:

将“slider”改为:gr.Slider(maximum=1,minimum=0)

可以设置默认值:

base_conf,base_iou=0.25,0.45

gr.Slider(maximum=1,minimum=0,value=base_conf)

完整代码如下:

import torch
import gradio as grmodel=torch.hub.load("./","custom",path="runs/train/exp2/weights/best.pt",source="local")title="基于Gradio的YOLOv5演示项目"
desc="这是一个基于YOLOv5的项目,非常简洁。"base_conf,base_iou=0.25,0.45def det_image(img,conf_thres,iou_thres):model.conf=conf_thresmodel.iou=iou_thresreturn model(img).render()[0]gr.Interface(inputs=["image",gr.Slider(maximum=1,minimum=0,value=base_conf),gr.Slider(maximum=1,minimum=0,value=base_iou)],outputs=["image"],fn=det_image,title=title,description=desc).launch()
# inputs=["image"] 映射,组件调用。实际上调用了gr.Image()
#创建slider时,并没有显式绑定。这是因为fn会绑定input和output input中的三个参数,对应了det_image的三个传参。

效果如下:

继续完善界面,我们可以预先放几个案例,供用户选择。

添加examples=[["./datasets/images/train/30.jpg",base_conf,base_iou],["./datasets/images/train/60.jpg",base_conf,base_iou]]

完整代码如下:

import torch
import gradio as grmodel=torch.hub.load("./","custom",path="runs/train/exp2/weights/best.pt",source="local")title="基于Gradio的YOLOv5演示项目"
desc="这是一个基于YOLOv5的项目,非常简洁。"base_conf,base_iou=0.25,0.45def det_image(img,conf_thres,iou_thres):model.conf=conf_thresmodel.iou=iou_thresreturn model(img).render()[0]gr.Interface(inputs=["image",gr.Slider(maximum=1,minimum=0,value=base_conf),gr.Slider(maximum=1,minimum=0,value=base_iou)],outputs=["image"],fn=det_image,title=title,description=desc,examples=[["./datasets/images/train/30.jpg",base_conf,base_iou],["./datasets/images/train/60.jpg",base_conf,base_iou]]).launch()
#预制案例。# inputs=["image"] 映射,组件调用。实际上调用了gr.Image()
#创建slider时,并没有显式绑定。这是因为fn会绑定input和output input中的三个参数,对应了det_image的三个传参。

效果如下:【我设置的参数不好,可以自己再调整参数,我一开始弄得label很草率,现在很后悔,每步都要认真做。】

  • 如果想调用摄像头检测,将inputs=["image" 改为 inputs=[gr.Webcam() 即可
  • 现在我们每次检测都需要点击submit才可以。在gr.Interface()中添加live=True,可以实现实时检测,不需要点击submit,程序会自动检测,显示出结果。
  • .launch() 中,添加share=True ,即.launch(share=True) 可以创建一个公共链接,大家都可以访问。

四、终极代码

import torch
import gradio as grmodel=torch.hub.load("./","custom",path="runs/train/exp2/weights/best.pt",source="local")title="基于Gradio的YOLOv5演示项目"
desc="这是一个基于YOLOv5的项目,非常简洁。"base_conf,base_iou=0.25,0.45def det_image(img,conf_thres,iou_thres):model.conf=conf_thresmodel.iou=iou_thresreturn model(img).render()[0]gr.Interface(inputs=["image",gr.Slider(maximum=1,minimum=0,value=base_conf),gr.Slider(maximum=1,minimum=0,value=base_iou)],outputs=["image"],fn=det_image,title=title,description=desc,live =True,examples=[["./datasets/images/train/30.jpg",base_conf,base_iou],["./datasets/images/train/60.jpg",base_conf,base_iou]]).launch(share=True)
#live=True, 可以实现实时检测,不需要点击submit。# inputs=["image"] 映射,组件调用。实际上调用了gr.Image()
#创建slider时,并没有显式绑定。这是因为fn会绑定input和output input中的三个参数,对应了det_image的三个传参。

效果图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/808826.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LangChain教程 | 实践过程报错集 | 持续更新

这是本人最近在做langchain教程过程中的遇到的报错,不分先后顺序。 报错:TypeError: NoneType object is not iterable 这个报错很常见,咱们要看原始报错的位置是哪里,下面是我的截图: 找到源头之后,就在源…

缝合的作品(并查集/逆序)

、思路:首先是并查集来做,首先给给每个单词一个id,然后把它放到ans[i]处。 对于操作1:把a单词换为单词b,就相当于a、b两个集合结合。然后再给a单词赋一个新的id,用来进行操作2,因为之后的操作2…

蓝桥杯-【二分】肖恩的苹果林

思路:有点类似于找最大值的最小化。 代码及解析 常规的模板引用40% #include <bits/stdc.h> using namespace std; #define ll long long const ll N1e53; ll a[N]; ll m,n; ll chack(ll mid) {int res1,last0;for(int i1;i<n;i){ if(a[i]-a[last]>mid){res;las…

DeepStream做对象模糊的几种方法

有时候&#xff0c;我们需要对视频的敏感信息做模糊处理&#xff0c;比如模糊人脸&#xff0c;车牌。 有时候&#xff0c;也需要对整帧做模糊&#xff0c;或者遮挡。比如这个例子。 下面介绍几种模糊的办法。 1. 通过nvosd deepstream-test1是DeepStream最简单的一个例子&…

代码随想录训练营day36

第八章 贪心算法 part05 1.LeetCode. 无重叠区间 1.1题目链接&#xff1a;435. 无重叠区间 文章讲解&#xff1a;代码随想录 视频讲解&#xff1a;B站卡哥视频 1.2思路&#xff1a;我来按照右边界排序&#xff0c;从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区…

Transformer - 注意⼒机制 Attention 中的 Q, K, V 解释(2)

Transformer - 注意⼒机制 Attention 中的 Q, K, V 解释&#xff08;2&#xff09; flyfish Transformer - 注意⼒机制 Scaled Dot-Product Attention 计算过程 Transformer - 注意⼒机制 代码实现 Transformer - 注意⼒机制 Scaled Dot-Product Attention不同的代码比较 Tran…

【数字化转型】上市公司智能制造词频统计数据(1991-2022年)

数据来源&#xff1a;上市公司年报 时间跨度&#xff1a;1991-2022年 数据范围&#xff1a;上市公司 数据指标&#xff1a; 版本一 智能制造 智能机器 智能生产 机器人 全自动 全机器 版本二 宏观政策 中国制造2025 工业4.0 互联网 范式特征 自动化 信息化 信息…

Socks5代理IP使用教程及常见使用问题

当我们在互联网上浏览网页、下载文件或者进行在线活动时&#xff0c;隐私和安全问题常常被提及。在这样的环境下&#xff0c;一个有效的解决方案是使用Sock5IP。本教程将向您介绍Sock5IP的使用方法&#xff0c;帮助您保护个人隐私并提升网络安全。 一、什么是Sock5IP&#xff1…

QT学习day5

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget),socket(new QTcpSocket(this)) {ui->setupUi(this);//初始化界面ui->msgEdit->setEnabled(false);//不可用ui->sendBtn-&g…

[Kubernetes[K8S]集群:master主节点初始化]:通过Calico和Coredns网络插件方式安装

文章目录 操作流程&#xff1a;前置&#xff1a;Docker和K8S安装版本匹配查看0.1&#xff1a;安装指定docker版本 **[1 — 7] ** [ 配置K8S主从集群前置准备操作 ]一&#xff1a;主节点操作 查看主机域名->编辑域名->域名配置二&#xff1a;安装自动填充&#xff0c;虚拟…

如何借助AI高效完成写作提纲

AI变革力量&#xff1a;未来数据中心的智能化之旅&#xff01; 在当今这个信息爆炸的时代&#xff0c;人工智能&#xff08;AI&#xff09;在众多领域展现出了它的能力&#xff0c;特别是在写作领域。AI写作工具不仅能够帮助我们高效地生成内容&#xff0c;还能在一定程度上提升…

代码随想录算法训练营第三十一天| 455.分发饼干、376.摆动序列、53.最大子序和

系列文章目录 目录 系列文章目录455.分发饼干贪心算法大饼干喂胃口大的&#xff08;先遍历胃口&#xff09;胃口大的先吃大饼干(先遍历饼干&#xff09;小饼干先喂胃口小的&#xff08;先遍历胃口&#xff09;胃口小的先吃小饼干&#xff08;先遍历饼干&#xff09; 376. 摆动序…

14-pyspark的DataFrame使用总结

目录 前言DataFrame使用总结 DataFrame的构建方法1&#xff1a;通过列表构建方法2&#xff1a;通过Row对象构建方法3&#xff1a;通过表Schema构建 方法4&#xff1a;rdd结合字符串构建 DataFrame的方法 PySpark实战笔记系列第五篇 10-用PySpark建立第一个Spark RDD(PySpark实战…

CSGO游戏搬砖,落袋为安才是王道

1.市场燃了&#xff0c;都在赚钱&#xff0c;谁在赔钱&#xff1f; 首先要分清“纸面富贵”和“落袋为安”。市场燃了&#xff0c;你库存里的渐变大狙从5000直接涨到了1W&#xff0c;你赚到5000了吗&#xff1f;严格讲&#xff0c;你需要把库存里的渐变大狙卖出去&#xff0c;提…

每天五分钟深度学习:逻辑回归算法的损失函数和代价函数是什么?

本文重点 前面已经学习了逻辑回归的假设函数,训练出模型的关键就是学习出参数w和b,要想学习出这两个参数,此时需要最小化逻辑回归的代价函数才可以训练出w和b。那么本节课我们将学习逻辑回归算法的代价函数是什么? 为什么不能平方差损失函数 线性回归的代价函数我们使用…

2024-基于人工智能的药物设计方法研究-AIDD

AIDD docx 基于人工智能的药物设计方法研究 AI作为一种强大的数据挖掘和分析技术已经涉及新药研发的各个阶段&#xff0c;有望推动创新药物先导分子的筛选、设计和发现&#xff0c;但基于AI的数据驱动式创新药物设计和筛选方法仍存在若干亟待解决的问题。我们课题组的核心研究…

基于达梦数据库开发-python篇

文章目录 前言一、搭建demo前提初始化简单demo 二、可能出现的异常情况DistutilsSetupErrorNo module named dmPythonlist报错 总结 前言 出于信创的考虑&#xff0c;近年来基于国产数据库达梦的应用开发逐渐变多。本文将介绍在windows环境下基于DM8版本的python的简单开发使用…

matlab使用教程(40)—二维傅里叶变换和多项式插值

1使用 FFT 进行多项式插值 使用快速傅里叶变换 (FFT) 来估算用于对一组数据进行插值的三角函数多项式的系数。 1.1数学中的 FFT FFT 算法通常与信号处理应用相关&#xff0c;但也可以在数学领域更广泛地用作快速计算工具。例如&#xff0c;通常通过解算简单的线性系统来计算…

24/04/11总结

IO流(First edition): IO流&#xff1a;用于读入写出文件中的数据 流的方向&#xff08;输入指拿出来,输出指写进去) 输入流:读取 输出流:写出 操作文件类型 字节流:所有类型文件 字符流:纯文本 字节流: InputStream的子类:FileInputStream:操作本地文件的字节输入流 OutputSt…

ssm036基于Java的图书管理系统+jsp

图书管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本图书管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处…