图像生成:Pytorch实现一个简单的对抗生成网络模型

图像生成:Pytorch实现一个简单的对抗生成网络模型

  • 前言
  • 相关介绍
  • 具体步骤
    • 准备并读取数据集
    • 定义生成器
    • 定义判别器
    • 定义损失函数
    • 定义优化器
    • 开始训练
    • 完整代码
  • 训练生成的图片

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入人工智能知识点专栏、Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关介绍

对抗生成网络(Adversarial Generative Networks,简称GANs)是由伊恩·古德费洛(Ian Goodfellow)等人在2014年提出的深度学习框架,主要用于无监督学习中的数据生成任务。GAN的设计灵感来源于博弈论中的极小极大游戏,在机器学习领域开辟了一种全新的生成模型方法。

GAN包含两个主要组成部分:

  1. 生成器(Generator, G)

    • 生成器G是一个神经网络,它的功能是从随机噪声向量(通常来自高斯分布或其他先验分布)出发,通过一系列变换来生成新的数据样本,这些样本应该尽可能接近于训练数据的真实分布。
    • G的目标是尽可能地“欺骗”判别器,使其无法区分生成的数据和真实数据。
  2. 判别器(Discriminator, D)

    • 判别器D也是一个神经网络,它的作用是接收输入的样本,并将其分类为“真”(来自真实数据分布)或“假”(来自生成器产生的分布)。
    • D的目标是准确地区分真实数据和伪造数据,从而提高自身鉴别能力。

训练过程中,GAN采用了极小极大博弈策略,具体步骤如下:

  • 先固定判别器参数,更新生成器参数以使得生成的数据更有可能被判别器误认为真实数据;
  • 再固定生成器参数,更新判别器参数以更好地区分真实数据和生成器生成的伪数据。

这种交替优化的方式促使两个网络性能不断提升,直到达到纳什均衡,此时生成器能够生成非常逼真的新样本,而判别器再也无法有效区分真实数据和生成数据。

GAN在图像生成、图像到图像转换、视频生成、音频合成等多个领域都取得了显著成果,并且随着研究的深入,衍生出了许多改进版本和变体,比如条件GAN(Conditional GANs)、 Wasserstein GAN(WGAN)、CycleGAN等,进一步提高了生成效果并拓展了应用范围。
在这里插入图片描述

具体步骤

准备并读取数据集

以mnist数据集为例。

# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(datasets.MNIST("./data/mnist",train=True,download=True,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)

定义生成器

class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()def block(in_feat, out_feat, normalize=True):layers = [nn.Linear(in_feat, out_feat)]if normalize:layers.append(nn.BatchNorm1d(out_feat, 0.8))layers.append(nn.LeakyReLU(0.2, inplace=True))return layersself.model = nn.Sequential(*block(opt.latent_dim, 128, normalize=False),*block(128, 256),*block(256, 512),*block(512, 1024),nn.Linear(1024, int(np.prod(img_shape))),nn.Tanh())def forward(self, z):img = self.model(z)img = img.view(img.size(0), *img_shape)return img

定义判别器

class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512),nn.LeakyReLU(0.2, inplace=True),nn.Linear(512, 256),nn.LeakyReLU(0.2, inplace=True),nn.Linear(256, 1),nn.Sigmoid(),)def forward(self, img):img_flat = img.view(img.size(0), -1)validity = self.model(img_flat)return validity

定义损失函数

# Loss function
adversarial_loss = torch.nn.BCELoss()

定义优化器

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

开始训练

# ----------
#  Training
# ----------for epoch in range(opt.n_epochs):for i, (imgs, _) in enumerate(dataloader):# Adversarial ground truthsvalid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)# Configure inputreal_imgs = Variable(imgs.type(Tensor))# -----------------#  Train Generator# -----------------optimizer_G.zero_grad()# Sample noise as generator inputz = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))# Generate a batch of imagesgen_imgs = generator(z)# Loss measures generator's ability to fool the discriminator# 生成器损失,目的是生成的图像,逼近真是图像,是判别器认为是真g_loss = adversarial_loss(discriminator(gen_imgs), valid)g_loss.backward()optimizer_G.step()# ---------------------#  Train Discriminator# ---------------------optimizer_D.zero_grad()# Measure discriminator's ability to classify real from generated samples# 真实图像在判别器的目标函数损失,即判别器应该判为真real_loss = adversarial_loss(discriminator(real_imgs), valid)# 生成器生成出来的图像在判别器的目标函数损失,即判别器应该判为假fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)# 判别器损失,目的是判别生成的图像是假d_loss = (real_loss + fake_loss) / 2d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))

完整代码

import argparse
import os
import numpy as np
import mathimport torchvision.transforms as transforms
from torchvision.utils import save_imagefrom torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variableimport torch.nn as nn
import torch.nn.functional as F
import torchos.makedirs("images", exist_ok=True)parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=100, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=128, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)img_shape = (opt.channels, opt.img_size, opt.img_size)cuda = True if torch.cuda.is_available() else Falseclass Generator(nn.Module):def __init__(self):super(Generator, self).__init__()def block(in_feat, out_feat, normalize=True):layers = [nn.Linear(in_feat, out_feat)]if normalize:layers.append(nn.BatchNorm1d(out_feat, 0.8))layers.append(nn.LeakyReLU(0.2, inplace=True))return layersself.model = nn.Sequential(*block(opt.latent_dim, 128, normalize=False),*block(128, 256),*block(256, 512),*block(512, 1024),nn.Linear(1024, int(np.prod(img_shape))),nn.Tanh())def forward(self, z):img = self.model(z)img = img.view(img.size(0), *img_shape)return imgclass Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512),nn.LeakyReLU(0.2, inplace=True),nn.Linear(512, 256),nn.LeakyReLU(0.2, inplace=True),nn.Linear(256, 1),nn.Sigmoid(),)def forward(self, img):img_flat = img.view(img.size(0), -1)validity = self.model(img_flat)return validity# Loss function
adversarial_loss = torch.nn.BCELoss()# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()if cuda:generator.cuda()discriminator.cuda()adversarial_loss.cuda()# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(datasets.MNIST("./data/mnist",train=True,download=True,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor# ----------
#  Training
# ----------for epoch in range(opt.n_epochs):for i, (imgs, _) in enumerate(dataloader):# Adversarial ground truthsvalid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)# Configure inputreal_imgs = Variable(imgs.type(Tensor))# -----------------#  Train Generator# -----------------optimizer_G.zero_grad()# Sample noise as generator inputz = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))# Generate a batch of imagesgen_imgs = generator(z)# Loss measures generator's ability to fool the discriminatorg_loss = adversarial_loss(discriminator(gen_imgs), valid)g_loss.backward()optimizer_G.step()# ---------------------#  Train Discriminator# ---------------------optimizer_D.zero_grad()# Measure discriminator's ability to classify real from generated samplesreal_loss = adversarial_loss(discriminator(real_imgs), valid)fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)d_loss = (real_loss + fake_loss) / 2d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))batches_done = epoch * len(dataloader) + iif batches_done % opt.sample_interval == 0:save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

在这里插入图片描述

训练生成的图片

在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入人工智能知识点专栏、Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/806489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux losetup命令教程:设置和控制循环设备(附实例详解和注意事项)

Linux losetup命令介绍 losetup(Loop device setup)命令在Linux操作系统中用于设置和控制循环设备。循环设备是一种伪设备,它使文件可以作为块设备进行访问。如果只给出了loopdev参数,那么将显示相应循环设备的状态。 Linux los…

实战Java高并发程序设计课

课程介绍 实战Java高并发程序设计课是一门针对Java开发者的培训课程,重点关注如何设计和优化高并发的程序。学员将学习到并发编程的基本概念、线程池的使用、锁机制、并发集合等技术,并通过实际案例进行实践操作。这门课程旨在帮助开发者掌握并发编程的…

【2024年5月备考新增】《软考案例分析答题技巧(5)采购、配置与变更、其他》

2.10 项目采购管理 采购管理过程:规划采购管理-实施采购-控制采购。 釆购步骤: ①准备釆购工作说明书(SOW)或工作大纲(TOR); ②准备高层级的成本估算,制定预算; ③发布招标广告; ④确定合格卖方的名单; ⑤准备并发布招标文件; ⑥由卖方准备并提交建议书; ⑦对建…

最祥解决python 将Dataframe格式数据上传数据库所碰到的问题

碰到的问题 上传Datafrane格式的数据到数据库 会碰见很多错误 举几个很普遍遇到的问题(主要以SqlServer举例) 这里解释下 将截断字符串或二进制数据 这个是字符长度超过数据库设置的长度 然后还有字符转int失败 或者字符串转换日期/或时间失败 这个是碰到的需要解决的最多的问…

Java面试题戏剧

目录 第一幕 、第一场)某大厦楼下大门前第二场)电梯中第三场)走廊中 第二幕、第一场)公司前台第二场)公司卫生间 第三幕、第一场)一场异常面试 第四幕 、第一场)大厦楼下门口第二场)…

Lobe UI - 基于 AntDesign 开发的 AIGC Web 应用的开源 UI 组件库

今天推荐一个可以快速开发 ChatGPT UI 界面的组件库,质量很高,拿来就能用。 Lobe UI 是由 lobehub 团队开发的一套 web UI 组件库,和我之前推荐的很多通用型的 UI 组件库不同,Lobe UI 是专门为目前火热的 AIGC 应用开发而打造&am…

Objective-C学习笔记(内存管理、property参数)4.9

1.引用计数器retainCount:每个对象都有这个属性,默认值为1,记录当前对象有多少人用。 为对象发送一条retain/release消息,对象的引用计数器加/减1,为对象发一条retainCount,得到对象的引用计数器值,当计数器…

上海计算机学会 2023年6月月赛 乙组T3 工作安排(结构体排序、贪心算法)

第三题:T3工作安排 标签:结构体排序、贪心算法 题意:有 n n n份任务。完成第 i i i份任务需要 t i t_i ti​的时间,在这份任务没有完成之前,每一个单位时间会收到 f i f_i fi​单位的罚款。求以什么顺序安排这些任务&…

鸿蒙实战开发-如何实现选择并查看文档与媒体文件

介绍 应用使用ohos.file.picker、ohos.multimedia.mediaLibrary、ohos.file.fs 等接口,实现了picker拉起文档编辑保存、拉起系统相册图片查看、拉起视频并播放的功能。 效果预览 使用说明: 在首页,应用展示出最近打开过的文档信息&#xf…

【AcWing】蓝桥杯集训每日一题Day22|区间DP|博弈论|1388.游戏(C++)

1388.游戏 1388. 游戏 - AcWing题库难度:中等时/空限制:1s / 64MB总通过数:1429总尝试数:1925来源:usaco training 3.3算法标签博弈论DP区间DP 题目内容 玩家一和玩家二共同玩一个小游戏。 给定一个包含 N 个正整数的…

【MATLAB 分类算法教程】_3麻雀搜索算法优化支持向量机SVM分类 - 教程和对应MATLAB代码

分类代码案例3:麻雀搜索算法优化支持向量机SVM分类 - MATLAB完全代码教程 1. 初始化代码2.读取数据代码3.数据预处理代码4.利用麻雀搜索算法SSA求解最佳的SVM参数c和g代码5.根据最佳的参数进行SVM模型训练代码6.SVM模型预测代码7.准确率分析以及分类结果对比作图代码本文以红酒…

Python中的生成器与迭代器:概念、区别及其实用性解析

Python中的生成器与迭代器:概念、区别及其实用性解析 在Python编程中,生成器(Generators)和迭代器(Iterators)是处理序列数据的两个重要概念。它们为处理大量数据或复杂数据结构提供了高效且灵活的方式。本…

SpringCloudAlibaba-整合sentinel(四)

目录地址: SpringCloudAlibaba整合-CSDN博客 这里只关注代码部分,至于sentinel服务UI的实用,后面可以补上 这里做一个改造: 因为sentinel可以和openfeign结合使用,为微服务做熔断降级; 为了方便微服务之间…

马云最新发声:AI时代刚刚到来,一切才刚开始,我们正当其时!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

3. Spring 注解存储对象 Bean的命名规范

从Java5.0开始,Java开始支持注解。Spring做为Java生态中的领军框架,从2.5版本后也开始支持注解。相比起之前使用xml来配置Spring框架,使用注解提供了更多的控制Spring框架的方式。 SpringFramework版本对应jdk版本重要特性SpringFramework 1…

Unity之Unity面试题(五)

内容将会持续更新,有错误的地方欢迎指正,谢谢! Unity之Unity面试题(五) TechX 坚持将创新的科技带给世界! 拥有更好的学习体验 —— 不断努力,不断进步,不断探索 TechX —— 心探索、心进取…

《Linux运维实战:Kylin V10操作系统开启安装软件保留缓存设置》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:Linux运维实战总结 一、操作步骤 1、改系统/etc/yum.conf配置文件,开启安装软件保留缓存设置 [rootecs-90c2-0003 ~]# vim /etc/yum.…

Ticket Servers: Distributed Unique Primary Keys on the Cheap(经济高效的分布式ID生成方案) 翻译

本文是对Ticket Servers: Distributed Unique Primary Keys on the Cheap https://code.flickr.net/2010/02/08/ticket-servers-distributed-unique-primary-keys-on-the-cheap/ 的翻译,此文主要讲述了flicker公司的用于生成分布式ID的Ticker Servers 的背景、原理、…

爬虫逆向实战(40)-某江酒店登陆(AES、MD5)

一、数据接口分析 主页地址:某江酒店 1、抓包 通过抓包可以发现数据接口是/api/member/login 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现,有TDFingerprint、blackBoxMd5、password和sw四个加密参数&#x…

Android自定义控件ScrollView实现上下滑动功能

本文实例为大家分享了Android ScrollView实现上下滑动功能的具体代码,供大家参考,具体内容如下 package com.example.zhuang; import android.content.Context; import android.util.AttributeSet; import android.util.DisplayMetrics; import android…