图像生成:Pytorch实现一个简单的对抗生成网络模型

图像生成:Pytorch实现一个简单的对抗生成网络模型

  • 前言
  • 相关介绍
  • 具体步骤
    • 准备并读取数据集
    • 定义生成器
    • 定义判别器
    • 定义损失函数
    • 定义优化器
    • 开始训练
    • 完整代码
  • 训练生成的图片

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入人工智能知识点专栏、Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关介绍

对抗生成网络(Adversarial Generative Networks,简称GANs)是由伊恩·古德费洛(Ian Goodfellow)等人在2014年提出的深度学习框架,主要用于无监督学习中的数据生成任务。GAN的设计灵感来源于博弈论中的极小极大游戏,在机器学习领域开辟了一种全新的生成模型方法。

GAN包含两个主要组成部分:

  1. 生成器(Generator, G)

    • 生成器G是一个神经网络,它的功能是从随机噪声向量(通常来自高斯分布或其他先验分布)出发,通过一系列变换来生成新的数据样本,这些样本应该尽可能接近于训练数据的真实分布。
    • G的目标是尽可能地“欺骗”判别器,使其无法区分生成的数据和真实数据。
  2. 判别器(Discriminator, D)

    • 判别器D也是一个神经网络,它的作用是接收输入的样本,并将其分类为“真”(来自真实数据分布)或“假”(来自生成器产生的分布)。
    • D的目标是准确地区分真实数据和伪造数据,从而提高自身鉴别能力。

训练过程中,GAN采用了极小极大博弈策略,具体步骤如下:

  • 先固定判别器参数,更新生成器参数以使得生成的数据更有可能被判别器误认为真实数据;
  • 再固定生成器参数,更新判别器参数以更好地区分真实数据和生成器生成的伪数据。

这种交替优化的方式促使两个网络性能不断提升,直到达到纳什均衡,此时生成器能够生成非常逼真的新样本,而判别器再也无法有效区分真实数据和生成数据。

GAN在图像生成、图像到图像转换、视频生成、音频合成等多个领域都取得了显著成果,并且随着研究的深入,衍生出了许多改进版本和变体,比如条件GAN(Conditional GANs)、 Wasserstein GAN(WGAN)、CycleGAN等,进一步提高了生成效果并拓展了应用范围。
在这里插入图片描述

具体步骤

准备并读取数据集

以mnist数据集为例。

# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(datasets.MNIST("./data/mnist",train=True,download=True,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)

定义生成器

class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()def block(in_feat, out_feat, normalize=True):layers = [nn.Linear(in_feat, out_feat)]if normalize:layers.append(nn.BatchNorm1d(out_feat, 0.8))layers.append(nn.LeakyReLU(0.2, inplace=True))return layersself.model = nn.Sequential(*block(opt.latent_dim, 128, normalize=False),*block(128, 256),*block(256, 512),*block(512, 1024),nn.Linear(1024, int(np.prod(img_shape))),nn.Tanh())def forward(self, z):img = self.model(z)img = img.view(img.size(0), *img_shape)return img

定义判别器

class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512),nn.LeakyReLU(0.2, inplace=True),nn.Linear(512, 256),nn.LeakyReLU(0.2, inplace=True),nn.Linear(256, 1),nn.Sigmoid(),)def forward(self, img):img_flat = img.view(img.size(0), -1)validity = self.model(img_flat)return validity

定义损失函数

# Loss function
adversarial_loss = torch.nn.BCELoss()

定义优化器

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

开始训练

# ----------
#  Training
# ----------for epoch in range(opt.n_epochs):for i, (imgs, _) in enumerate(dataloader):# Adversarial ground truthsvalid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)# Configure inputreal_imgs = Variable(imgs.type(Tensor))# -----------------#  Train Generator# -----------------optimizer_G.zero_grad()# Sample noise as generator inputz = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))# Generate a batch of imagesgen_imgs = generator(z)# Loss measures generator's ability to fool the discriminator# 生成器损失,目的是生成的图像,逼近真是图像,是判别器认为是真g_loss = adversarial_loss(discriminator(gen_imgs), valid)g_loss.backward()optimizer_G.step()# ---------------------#  Train Discriminator# ---------------------optimizer_D.zero_grad()# Measure discriminator's ability to classify real from generated samples# 真实图像在判别器的目标函数损失,即判别器应该判为真real_loss = adversarial_loss(discriminator(real_imgs), valid)# 生成器生成出来的图像在判别器的目标函数损失,即判别器应该判为假fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)# 判别器损失,目的是判别生成的图像是假d_loss = (real_loss + fake_loss) / 2d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))

完整代码

import argparse
import os
import numpy as np
import mathimport torchvision.transforms as transforms
from torchvision.utils import save_imagefrom torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variableimport torch.nn as nn
import torch.nn.functional as F
import torchos.makedirs("images", exist_ok=True)parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=100, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=128, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)img_shape = (opt.channels, opt.img_size, opt.img_size)cuda = True if torch.cuda.is_available() else Falseclass Generator(nn.Module):def __init__(self):super(Generator, self).__init__()def block(in_feat, out_feat, normalize=True):layers = [nn.Linear(in_feat, out_feat)]if normalize:layers.append(nn.BatchNorm1d(out_feat, 0.8))layers.append(nn.LeakyReLU(0.2, inplace=True))return layersself.model = nn.Sequential(*block(opt.latent_dim, 128, normalize=False),*block(128, 256),*block(256, 512),*block(512, 1024),nn.Linear(1024, int(np.prod(img_shape))),nn.Tanh())def forward(self, z):img = self.model(z)img = img.view(img.size(0), *img_shape)return imgclass Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512),nn.LeakyReLU(0.2, inplace=True),nn.Linear(512, 256),nn.LeakyReLU(0.2, inplace=True),nn.Linear(256, 1),nn.Sigmoid(),)def forward(self, img):img_flat = img.view(img.size(0), -1)validity = self.model(img_flat)return validity# Loss function
adversarial_loss = torch.nn.BCELoss()# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()if cuda:generator.cuda()discriminator.cuda()adversarial_loss.cuda()# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(datasets.MNIST("./data/mnist",train=True,download=True,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor# ----------
#  Training
# ----------for epoch in range(opt.n_epochs):for i, (imgs, _) in enumerate(dataloader):# Adversarial ground truthsvalid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)# Configure inputreal_imgs = Variable(imgs.type(Tensor))# -----------------#  Train Generator# -----------------optimizer_G.zero_grad()# Sample noise as generator inputz = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))# Generate a batch of imagesgen_imgs = generator(z)# Loss measures generator's ability to fool the discriminatorg_loss = adversarial_loss(discriminator(gen_imgs), valid)g_loss.backward()optimizer_G.step()# ---------------------#  Train Discriminator# ---------------------optimizer_D.zero_grad()# Measure discriminator's ability to classify real from generated samplesreal_loss = adversarial_loss(discriminator(real_imgs), valid)fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)d_loss = (real_loss + fake_loss) / 2d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))batches_done = epoch * len(dataloader) + iif batches_done % opt.sample_interval == 0:save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)

在这里插入图片描述

训练生成的图片

在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入人工智能知识点专栏、Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/806489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实战Java高并发程序设计课

课程介绍 实战Java高并发程序设计课是一门针对Java开发者的培训课程,重点关注如何设计和优化高并发的程序。学员将学习到并发编程的基本概念、线程池的使用、锁机制、并发集合等技术,并通过实际案例进行实践操作。这门课程旨在帮助开发者掌握并发编程的…

最祥解决python 将Dataframe格式数据上传数据库所碰到的问题

碰到的问题 上传Datafrane格式的数据到数据库 会碰见很多错误 举几个很普遍遇到的问题(主要以SqlServer举例) 这里解释下 将截断字符串或二进制数据 这个是字符长度超过数据库设置的长度 然后还有字符转int失败 或者字符串转换日期/或时间失败 这个是碰到的需要解决的最多的问…

Java面试题戏剧

目录 第一幕 、第一场)某大厦楼下大门前第二场)电梯中第三场)走廊中 第二幕、第一场)公司前台第二场)公司卫生间 第三幕、第一场)一场异常面试 第四幕 、第一场)大厦楼下门口第二场)…

Lobe UI - 基于 AntDesign 开发的 AIGC Web 应用的开源 UI 组件库

今天推荐一个可以快速开发 ChatGPT UI 界面的组件库,质量很高,拿来就能用。 Lobe UI 是由 lobehub 团队开发的一套 web UI 组件库,和我之前推荐的很多通用型的 UI 组件库不同,Lobe UI 是专门为目前火热的 AIGC 应用开发而打造&am…

鸿蒙实战开发-如何实现选择并查看文档与媒体文件

介绍 应用使用ohos.file.picker、ohos.multimedia.mediaLibrary、ohos.file.fs 等接口,实现了picker拉起文档编辑保存、拉起系统相册图片查看、拉起视频并播放的功能。 效果预览 使用说明: 在首页,应用展示出最近打开过的文档信息&#xf…

马云最新发声:AI时代刚刚到来,一切才刚开始,我们正当其时!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

3. Spring 注解存储对象 Bean的命名规范

从Java5.0开始,Java开始支持注解。Spring做为Java生态中的领军框架,从2.5版本后也开始支持注解。相比起之前使用xml来配置Spring框架,使用注解提供了更多的控制Spring框架的方式。 SpringFramework版本对应jdk版本重要特性SpringFramework 1…

Unity之Unity面试题(五)

内容将会持续更新,有错误的地方欢迎指正,谢谢! Unity之Unity面试题(五) TechX 坚持将创新的科技带给世界! 拥有更好的学习体验 —— 不断努力,不断进步,不断探索 TechX —— 心探索、心进取…

爬虫逆向实战(40)-某江酒店登陆(AES、MD5)

一、数据接口分析 主页地址:某江酒店 1、抓包 通过抓包可以发现数据接口是/api/member/login 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现,有TDFingerprint、blackBoxMd5、password和sw四个加密参数&#x…

Android自定义控件ScrollView实现上下滑动功能

本文实例为大家分享了Android ScrollView实现上下滑动功能的具体代码,供大家参考,具体内容如下 package com.example.zhuang; import android.content.Context; import android.util.AttributeSet; import android.util.DisplayMetrics; import android…

HTML5学习记录

简介 超文本标记语言&#xff08;HyperText Markup Language&#xff0c;简称HTML&#xff09;&#xff0c;是一种用于创建网页的标准标记语言。 编辑器 下载传送门https://code.visualstudio.com/ 下载编辑器插件 标题 标题通过 <h1> - <h6> 标签进行定义。 …

科技助力输电线安全隐患预警,基于YOLOv5全系列参数【n/s/m/l/x】模型开发构建电力设备场景下输电线安全隐患目标检测预警系统

电力的普及让我们的生活变得更加便利&#xff0c;四通八达的电网连接着生活的方方面面&#xff0c;电力能源主要是依托于庞大复杂的电网电力设备进行传输的&#xff0c;有效地保障电网场景下输电线的安全对于保障我们日常生活所需要的电力有着重要的意义&#xff0c;但是电力设…

【Web开发】jquery图片放大镜效果制作变焦镜头图片放大

jquery图片放大镜效果制作变焦镜头图片放大实现 整体步骤流程&#xff1a; 1. 前端html实现 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns"…

【测试开发学习历程】python面向对象

1 面向对象的基本概念 面向对象&#xff1a;是把构成问题事务分解成各个对象&#xff0c;建立对象的目的不是为了完成一个步骤&#xff0c;而是为了描叙某个事物在整个解决问题的步骤中的行为。 怎么理解面向对象&#xff1f; 面向对象是一种编程思想&#xff0c;就是把要解决…

ruoyi-nbcio-plus基于vue3的flowable的自定义业务提交申请组件的升级修改

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…

NAV2 ros galactic安装教程

sudo apt install ros-galactic-gazebo-* 这个必须下载 sudo apt-get install -y ros-galactic-rmw* 这个也是 使用操作系统中的包管理器安装 Nav2 包: sudo apt install ros-galactic-navigation2 sudo apt install ros-galactic-nav2-bringup安装Turtlebot 3 软件包: sudo…

Java快速入门系列-8(Web开发基础)

第8章 Web开发基础 8.1 Servlet与JSP8.1.1 Servlet简介8.1.2 JSP简介与使用8.1.3 Servlet与JSP协作8.2 Web服务器与Tomcat8.2.1 安装与配置Tomcat8.2.2 配置与管理Web应用8.3 MVC设计模式与Java Web应用8.3.1 MVC原理8.3.2 MVC在Java Web中的应用8.4 RESTful API设计与实现8.4.…

参数化方案对耦合模式影响试验

今天建立几个实验 HIST_model_test_lthf_tbf HIST_model_test_lthf_phiq HIST_model_test_sshf_tbf HIST_model_test_pblh_zli HIST_model_test_nocouple 十天过去了&#xff0c;这次运行的速度显然慢了好多&#xff0c;还没运行到2000年&#xff0c;没办法只能就地取材了。 我…

虚拟货币:数字金融时代的新工具

在数字化时代的到来之后&#xff0c;虚拟货币逐渐成为了一种广为人知的金融工具。虚拟货币是一种数字化的资产&#xff0c;它不像传统货币那样由政府或中央银行发行和监管。相反&#xff0c;虚拟货币通过密码学技术和分布式账本技术来实现去中心化的发行和交易。 虚拟货币的代…