【机器学习】机器学习创建算法第4篇:K-近邻算法,学习目标【附代码文档】

机器学习(算法篇)完整教程(附代码资料)主要内容讲述:机器学习算法课程定位、目标,K-近邻算法定位,目标,学习目标,1 什么是K-近邻算法,1 Scikit-learn工具介绍,2 K-近邻算法API。K-近邻算法,1.4 k值的选择学习目标,学习目标,1 kd树简介,2 构造方法,3 案例分析,4 总结。K-近邻算法,1.6 案例:鸢尾花种类预测--数据集介绍学习目标,1 案例:鸢尾花种类预测,2 scikit-learn中数据集介绍,1 什么是特征预处理,2 归一化,3 标准化。K-近邻算法,1.8 案例:鸢尾花种类预测—流程实现学习目标,1 再识K-近邻算法API,2 案例:鸢尾花种类预测,总结,1 什么是交叉验证(cross validation),2 什么是网格搜索(Grid Search)。线性回归,2.1 线性回归简介学习目标,1 线性回归应用场景,2 什么是线性回归,1 线性回归API,2 举例,1 常见函数的导数。线性回归,2.6 梯度下降法介绍学习目标,1 全梯度下降算法(FG),2 随机梯度下降算法(SG),3 小批量梯度下降算法(mini-bantch),4 随机平均梯度下降算法(SAG),5 算法比较。线性回归,2.8 欠拟合和过拟合学习目标,1 定义,2 原因以及解决办法,3 正则化,4 维灾难【拓展知识】。线性回归,2.9 正则化线性模型学习目标,1 Ridge Regression (岭回归,又名 Tikhonov regularization),2 Lasso Regression(Lasso 回归),3 Elastic Net (弹性网络),4 Early Stopping [了解],1 API。逻辑回归,3.4 分类评估方法学习目标,1.分类评估方法,2 ROC曲线与AUC指标,3 总结,1 曲线绘制,2 意义解释。决策树算法,4.4 特征工程-特征提取学习目标,1 特征提取,2 字典特征提取,3 文本特征提取。决策树算法,4.5 决策树算法api学习目标,1 泰坦尼克号数据,2 步骤分析,3 代码过程,3 决策树可视化,学习目标。集成学习,5.3 Boosting学习目标,1.boosting集成原理,2 GBDT(了解),3.XGBoost【了解】,4 什么是泰勒展开式【拓展】,学习目标。聚类算法,6.4 模型评估学习目标,1 误差平方和(SSE \The sum of squares due to error):,2 “肘”方法 (Elbow method) — K值确定,3 轮廓系数法(Silhouette Coefficient),4 CH系数(Calinski-Harabasz Index),5 总结。聚类算法,6.6 特征降维学习目标,1 降维,2 特征选择,3 主成分分析,1 需求,2 分析。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.8 案例:鸢尾花种类预测—流程实现

1 再识K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

  • n_neighbors:

    • int,可选(默认= 5),k_neighbors查询默认使用的邻居数
  • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’}

    • 快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,

      • brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。
      • kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。
      • ball tree是为了克服kd树高纬失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

2 案例:鸢尾花种类预测

2.1 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

img

2.2 步骤分析

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习(模型训练)
  • 5.模型评估

2.3 代码过程

  • 导入模块
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
  • 先从sklearn当中获取数据集,然后进行数据集的分割
# 1.获取数据集iris = load_iris()# 2.数据基本处理# x_train,x_test,y_train,y_test为训练集特征值、测试集特征值、训练集目标值、测试集目标值x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
  • 进行数据标准化

  • 特征值的标准化

# 3、特征工程:标准化transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
  • 模型进行训练预测
# 4、机器学习(模型训练)estimator = KNeighborsClassifier(n_neighbors=9)
estimator.fit(x_train, y_train)# 5、模型评估# 方法1:比对真实值和预测值y_predict = estimator.predict(x_test)
print("预测结果为:\n", y_predict)
print("比对真实值和预测值:\n", y_predict == y_test)# 方法2:直接计算准确率score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

1.9 练一练

同学之间讨论刚才完成的机器学习代码,并且确保在自己的电脑是哪个运行成功

总结

  • 在本案例中,具体完成内容有:
  • 使用可视化加载和探索数据,以确定特征是否能将不同类别分开。

  • 通过标准化数字特征并随机抽样到训练集和测试集来准备数据。
  • 通过统计学,精确度度量进行构建和评估机器学习模型。

  • k近邻算法总结
  • 优点:
    • 简单有效
    • 重新训练的代价低
    • 适合类域交叉样本

      • KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
    • 适合大样本自动分类

      • 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
  • 缺点:
    • 惰性学习

      • KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多
    • 类别评分不是规格化

      • 不像一些通过概率评分的分类
    • 输出可解释性不强

      • 例如决策树的输出可解释性就较强
    • 对不均衡的样本不擅长

      • 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
    • 计算量较大

      • 目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

1.10 交叉验证,网格搜索

1 什么是交叉验证(cross validation)

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称4折交叉验证。

1.1 分析

我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理

  • 训练集:训练集+验证集
  • 测试集:测试集

1.2 为什么需要交叉验证

交叉验证目的:为了让被评估的模型更加准确可信

问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

3 交叉验证,网格搜索(模型选择与调优)API:

  • sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)

  • 对估计器的指定参数值进行详尽搜索

  • estimator:估计器对象
  • param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
  • cv:指定几折交叉验证
  • fit:输入训练数据
  • score:准确率
  • 结果分析:

    • bestscore__:在交叉验证中验证的最好结果
    • bestestimator:最好的参数模型
    • cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

4 鸢尾花案例增加K值调优

  • 使用GridSearchCV构建估计器
# 1、获取数据集iris = load_iris()# 2、数据基本处理 -- 划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)# 3、特征工程:标准化# 实例化一个转换器类transfer = StandardScaler()# 调用fit_transformx_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)# 4、KNN预估器流程#  4.1 实例化预估器类estimator = KNeighborsClassifier()# 4.2 模型选择与调优——网格搜索和交叉验证# 准备要调的超参数param_dict = {"n_neighbors": [1, 3, 5]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)# 4.3 fit数据进行训练estimator.fit(x_train, y_train)# 5、评估模型效果# 方法a:比对预测结果和真实值y_predict = estimator.predict(x_test)
print("比对预测结果和真实值:\n", y_predict == y_test)# 方法b:直接计算准确率score = estimator.score(x_test, y_test)
print("直接计算准确率:\n", score)
  • 然后进行评估查看最终选择的结果和交叉验证的结果
print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("最好的参数模型:\n", estimator.best_estimator_)
print("每次交叉验证后的准确率结果:\n", estimator.cv_results_)
  • 最终结果
比对预测结果和真实值:[ True  True  True  True  True  True  True False  True  True  True  TrueTrue  True  True  True  True  True False  True  True  True  True  TrueTrue  True  True  True  True  True  True  True  True  True  True  TrueTrue  True]
直接计算准确率:0.947368421053
在交叉验证中验证的最好结果:0.973214285714
最好的参数模型:KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',metric_params=None, n_jobs=1, n_neighbors=5, p=2,weights='uniform')
每次交叉验证后的准确率结果:{'mean_fit_time': array([ 0.00114751,  0.00027037,  0.00024462]), 'std_fit_time': array([  1.13901511e-03,   1.25300249e-05,   1.11011951e-05]), 'mean_score_time': array([ 0.00085751,  0.00048693,  0.00045625]), 'std_score_time': array([  3.52785082e-04,   2.87650037e-05,   5.29673344e-06]), 'param_n_neighbors': masked_array(data = [1 3 5],mask = [False False False],fill_value = ?)
, 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}], 'split0_test_score': array([ 0.97368421,  0.97368421,  0.97368421]), 'split1_test_score': array([ 0.97297297,  0.97297297,  0.97297297]), 'split2_test_score': array([ 0.94594595,  0.89189189,  0.97297297]), 'mean_test_score': array([ 0.96428571,  0.94642857,  0.97321429]), 'std_test_score': array([ 0.01288472,  0.03830641,  0.00033675]), 'rank_test_score': array([2, 3, 1], dtype=int32), 'split0_train_score': array([ 1.        ,  0.95945946,  0.97297297]), 'split1_train_score': array([ 1.        ,  0.96      ,  0.97333333]), 'split2_train_score': array([ 1.  ,  0.96,  0.96]), 'mean_train_score': array([ 1.        ,  0.95981982,  0.96876877]), 'std_train_score': array([ 0.        ,  0.00025481,  0.0062022 ])}

1.11 案例2:预测facebook签到位置

1 数据集介绍

FBlocationä"‹ç"

数据介绍:将根据用户的位置,准确性和时间戳预测用户正在查看的业务。

train.csv,test.csv 
row_id:登记事件的ID
xy:坐标
准确性:定位准确性 
时间:时间戳
place_id:业务的ID,这是您预测的目标

官网:[

2 步骤分析

  • 对于数据做一些基本处理(这里所做的一些处理不一定达到很好的效果,我们只是简单尝试,有些特征我们可以根据一些特征选择的方式去做处理)

  • 1 缩小数据集范围 DataFrame.query()

  • 2 选取有用的时间特征

  • 3 将签到位置少于n个用户的删除

  • 分割数据集

  • 标准化处理

  • k-近邻预测

3 代码过程

  • 1.获取数据集
# 1、获取数据集facebook = pd.read_csv("./data/FBlocation/train.csv")
  • 2.基本数据处理
# 2.基本数据处理# 2.1 缩小数据范围facebook_data = facebook.query("x>2.0 & x<2.5 & y>2.0 & y<2.5")# 2.2 选择时间特征time = pd.to_datetime(facebook_data["time"], unit="s")
time = pd.DatetimeIndex(time)
facebook_data["day"] = time.day
facebook_data["hour"] = time.hour
facebook_data["weekday"] = time.weekday# 2.3 去掉签到较少的地方place_count = facebook_data.groupby("place_id").count()
place_count = place_count[place_count["row_id"]>3]
facebook_data = facebook_data[facebook_data["place_id"].isin(place_count.index)]# 2.4 确定特征值和目标值x = facebook_data[["x", "y", "accuracy", "day", "hour", "weekday"]]
y = facebook_data["place_id"]# 2.5 分割数据集x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
  • 特征工程--特征预处理(标准化)
# 3.特征工程--特征预处理(标准化)# 3.1 实例化一个转换器transfer = StandardScaler()# 3.2 调用fit_transformx_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
  • 机器学习--knn+cv
# 4.机器学习--knn+cv# 4.1 实例化一个估计器estimator = KNeighborsClassifier()# 4.2 调用gridsearchCVparam_grid = {"n_neighbors": [1, 3, 5, 7, 9]}
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5)# 4.3 模型训练estimator.fit(x_train, y_train)
  • 模型评估
# 5.模型评估# 5.1 基本评估方式score = estimator.score(x_test, y_test)
print("最后预测的准确率为:\n", score)y_predict = estimator.predict(x_test)
print("最后的预测值为:\n", y_predict)
print("预测值和真实值的对比情况:\n", y_predict == y_test)# 5.2 使用交叉验证后的评估方式print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("最好的参数模型:\n", estimator.best_estimator_)
print("每次交叉验证后的验证集准确率结果和训练集准确率结果:\n",estimator.cv_results_)

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/794551.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧开发平台免!费!申请试用

原创 F学社 F学社 2024-04-01 17:13 江苏 扫描二维码即可申请试用 01 智慧开发平台简介 F1 WIFI智慧教育平台是可支持线上线下联动的基于FPGA的口袋式数字系统学习平台。其采用了AMD、Altera、安路、高云等国外国内主流公司的FPGA进行数字系统方向的教学实验设计&#xff0c…

数学建模-最优包衣厚度终点判别法(主成分分析)

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是viperrrrrrr~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#xff…

【剑指offr--C/C++】JZ7 重建二叉树

一、题目 二、思路及代码 前序遍历&#xff1a;中、左、右。所以前序遍历的第一个节点是树的根节点&#xff0c;第二个节点是左子树的根节点。。。。 中序遍历&#xff1a;左、中、右。树的根节点在中间某处 我们可以根据二者的特点结合一下&#xff1a;对于前序遍历序列{1,2,4…

11-LINUX--信号

一.信号的基本概念 信号是系统响应某个条件而产生的事件&#xff0c;进程接收到信号会执行相应的操作。 与信号有关的系统调用在“signal.h”头文件中有声明 常见信号的值&#xff0c;及对应的功能说明&#xff1a; 信号的值在系统源码中的定义如下&#xff1a; 1. #define …

渗透测试靶机----sec123

渗透测试靶机----sec123 复现打靶,这里先需要搭建好环境 这里还需要将内网中的网站映射到公网中,完全模拟实战渗透测试使用frp轻松实现 这里就搭建好靶机了,准备开始渗透工作 先使用这个网址,扫描看看这里通过扫描,发现这三个端口对应三个网页: http://107.151.243.222:8…

用于无人机小型化设计的高精度温补晶振

用于无人机小型化设计的高精度温补晶振:TG2016SMN和TG2520SMN。无人机的发展可以说是非常的迅速&#xff0c;在安防&#xff0c;农业&#xff0c;交通&#xff0c;电力&#xff0c;直播等领域经常能看到无人机大显身手。无人机的应用场最是非常的广泛&#xff0c;功能更强&…

微软detours代码借鉴点备注

comeasy 借鉴点1 Loadlibray的时间选择 注入库wrotei.dll&#xff0c;为了获取istream的接口&#xff0c;需要loadlibrary&#xff0c;但是在dllmain中是不建议这样做的。因此&#xff0c;动态库在dllmain的时候直接挂载了comeasy.exe的入口 //获取入口 TrueEntryPoint (i…

数据仓库面试总结

文章目录 1.什么是数据仓库&#xff1f;2.ETL是什么&#xff1f;3.数据仓库和数据库的区别&#xff08;OLTP和OLAP的区别&#xff09;4.数据仓库和数据集市的区别5.维度分析5.1 什么是维度&#xff1f;5.2什么是指标&#xff1f; 6.什么是数仓建模&#xff1f;7.事实表7.维度表…

SecureCRT通过私钥连接跳板机,再连接到目标服务器

文章目录 1. 配置第一个session&#xff08;跳板机&#xff09;2. 设置本地端口3. 设置全局firewall4. 配置第二个session&#xff08;目标服务器&#xff09; 服务器那边给了一个私钥&#xff0c;现在需要通过私钥连接跳板机&#xff0c;再连接到目标服务器上 &#x1f349; …

【C++】stack和queue

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. stack的介绍和使用1.1 stack的介绍1.2 stack的使用1.3 stack的模拟实现 2. queue的介绍和使用2.1 queue的介绍2.2 queue的使用2.3 queue的模拟实现 3. 容器适配器3.1 概念3.2 STL标准库中stack和queue的底层结构3.…

VMware ESXi 6.7

1.浏览器中输入地址&#xff0c;进入管理界面 2.选择 存储 右击浏览&#xff0c;创建新的目录 3.点击 上载 &#xff0c;选择镜像文件 4.等待上载完成 5.点击 虚拟机-新建虚拟机 6.进入新建虚拟机界面 7.进入Windows安装界面 8.安装VMware Tools

python爬虫获取豆瓣前top250的标题(简单)

今天是简略的一篇&#xff0c;简单小实验 import requests from bs4 import BeautifulSoup# 模拟浏览器的构成&#xff08;请求头&#xff09; headers {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Ch…

使用CSS计数器,在目录名称前加上了序号,让目录看起来更加井然有序

目录&#xff08;Text of Contents缩写为TOC&#xff09;&#xff0c;其实就是一篇文章的概要或简述。这好比&#xff0c;去书店买书&#xff0c;先是被这本书的标题所吸引&#xff0c;而后我们才会&#xff0c;翻开这本书目录&#xff0c;看看这本书主要是在讲些什么&#xff…

Restful Web Service

Restful 1.特点 RESTful是一种架构风格&#xff0c;强调简单、轻量级和对资源的状态less操作。RESTful是通过HTTP协议进行通信的。RESTful的应用程序可以调用运行在不同服务器上的服务或函数。RESTful的接口通常使用JSON&#xff0c;但实际上它们都支持多种数据格式。RESTful…

python 笔记

文章目录 pdbpdb开始调试pythonpdb设置断点单步执行进入到函数的内部执行到下一个断点或程序结束调用栈查看命令查看当前函数调用堆栈向上一层函数查看调用堆栈查看源代码 importimport 用法 numpy导入numpy模块numpy常用函数np.argmaxnp.sum range生成连续序列生成不连续序列 …

离线数仓(十)【ADS 层开发】

前言 剩下的 ADS 层主要就是写 SQL 了&#xff0c;就像我们之前练习的 HQL 题一样&#xff0c;不同的是这里的数据从哪张表读取&#xff08;DWD 还是 ADS 甚至个别表需要从 DIM 层读取&#xff09;需要我们自己来分析。 ADS 的建表语句和 MySQL 是对应的&#xff0c;我们到时候…

从0到1实现RPC | 04 负载均衡和静态注册中心

一、Router的定义 Router路由用于预筛选&#xff0c;Dubbo有这样的设计&#xff0c;SpringCloud没有。 二、LoadBanlancer定义 负载均衡器&#xff1a;默认取第一个 当前支持随机和轮询两种负载均衡器。 随机&#xff1a;从所有provider中随机选择一个。 轮询&#xff1a;每…

【C++】引用与指针

​​ &#x1f331;博客主页&#xff1a;青竹雾色间. &#x1f618;博客制作不易欢迎各位&#x1f44d;点赞⭐收藏➕关注 ✨人生如寄&#xff0c;多忧何为 ✨ 目录标题 前言一.引用&#xff08;Reference&#xff09;二.指针&#xff08;Pointer&#xff09;三. 比较与总结 前…

机器学习第33周周报Airformer

文章目录 week33 AirFormer摘要Abstract一、论文的前置知识1. 多头注意力机制&#xff08;MSA&#xff09;2. 具有潜变量的变分模型 二、文献阅读1. 题目2. abstract3. 问题与模型阐述3.1 问题定义3.2 模型概述3.3 跨空间MSA&#xff08;DS-MSA&#xff09;3.4 时间相关MSA&…

【Qt 学习笔记】使用两种方式实现helloworld

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 使用两种方式实现helloworld 文章编号&#xff1a;Qt 学习笔记 / 05 …