C++类
1. 类内成员函数隐式声明为inline
class Str {int x;int y = 3;
public:inline void fun(){std::cout<<"pf,yes!"<<std::endl;}
};
这段代码不会报错,但是类内的成员函数隐式声明为inline函数,不需要单独写在前面。因此将成员函数在类的内部实现是最保险的写法。
2. 全局函数上使用inline。
inline int Add(int x, int y) {return x + y;
}
这是全局函数上使用inline函数。
同样,上述代码可以写在头文件之中,或写在源文件之中,如果不使用 inline,那么写在头文件之中被多个源文件 include 那么就会导致符号重定义冲突,单个源文件引入却不会。
3. inline关键字的作用
-
可以在任意的函数定义的时候使用;
-
建议编译器使用内嵌的方式优化代码;
-
inline函数,由调用的函数的源文件实现;
使用使用内联展开,取决于函数的复杂程度
以下的函数使用inline也不会被优化
1、函数指针或函数引用
2、复杂的 inline 函数体
3、虚函数
4、递归函数
举例说明如下
头文件中
#ifndef ICPP_HEADER_H
#define ICPP_HEADER_H
#include <iostream>
using namespace std;
class Str {int x;int y = 3;
public:void fun() {cout << "yes pf" << endl;}
};#endif //ICPP_HEADER_H
main文件中
#include "header.h"
#include <iostream>
using namespace std;int main() {int a = 0;int c = a + 7;Str str;str.fun();std::cout << "Hello, World!" << std::endl;return 0;
}
另外一个源文件中这样写
#include "header.h"
#include <iostream>
编译成功
但是如果,头文件中,类内声明,类外定义,就会报错。
#ifndef ICPP_HEADER_H
#define ICPP_HEADER_H#include <iostream>
using namespace std;
class Str {int x;int y = 3;
public:void fun();
};void Str::fun() {cout << "yes pf" << endl;}
#endif //ICPP_HEADER_H
报错信息如下:
/mnt/e/iCode/icpp/header.h:17: multiple definition of `Str::fun()'; CMakeFiles/icpp.dir/main.cpp.o:/mnt/e/iCode/icpp/header.h:17: first defined here
collect2: error: ld returned 1 exit status
问题分析
关于函数的声明和定义可以写在头文件之中,也可以写在源文件之中,但如果不加inline,那么写在头文件之中被多个源文件 include 那么就会导致符号重定义冲突,单个源文件引入却不会。
- 如果仅有一个头文件,一个文件使用头文件中的类的外部定义,不会出现问题;
- 类内定义和实现函数,不论有多少外部使用这个头文件的源文件都不会报错;
- 多文件使用头文件时,类内声明,类外定义,将类外的定义声明成内联函数,使用inline关键字不会报错;
- 掌握inline关键字的使用方法;
4. 分析下面几种写法
回答以下几个问题:
-
这个使用方法using my_int = int
-
类外声明的使用的使用方法,最好使用下面这种写法
-
inline auto Str::fun2()->my_int {{cout<<"my_int"<<endl;} }
举例如下:
//
// Created by pfw20 on 2024/3/31.
//#ifndef ICPP_HEADER_H
#define ICPP_HEADER_H#include <iostream>
using namespace std;
class Str {using my_int = int;my_int m;int x;int y = 3;
public:void fun();my_int fun1();my_int fun2();
};inline Str::my_int Str::fun1() {{cout<<"my_int"<<endl;}
}
// 简化上述的代码另外一种写法
inline auto Str::fun2()->my_int {{cout<<"my_int"<<endl;}
}inline int Add(int x, int y) {return x + y;
}
inline void Str::fun() {cout << "yes pf" << endl;}
#endif //ICPP_HEADER_H
待说明:
\#include<iostream>\#include<limits>struct A{// char a = 'a';int c =10;};int main(){int x =10;char y = 'a';std::cout<<std::numeric_limits<int>::min()<<std::endl;std::cout<<sizeof(A)<<std::endl;std::cout<<alignof(int) <<std::endl;}
5. this指针,指向当前对象
在类的内部会有一个this指针,类型为class* this 隐藏指针,this 是一个常量,指针不能修改,指针指向的内容是可以修改。
修改类的成员所以可以使用this->成员,访问类内的成员,
用处:
- 使用this可以防止函数中的参数和类中的成员混淆
- 基于const的成员函数重载
class Str{void fun(int x){}
// 基于const的成员函数重载void fun(int x) const{ // this 本身不能修改,可以修改指向的内容,加上const之后,指向的内容也是不能修改的。}int x;
};
- & 基于引用的重载(不作重点记录)
这个和基于const的重载不能混淆使用。仅仅使用const或者仅仅使用引用
- 多个相同的变量出现在类的内部和全局中,使用类内部的可以使用this指针,全局的使用
::
即可
静态成员函数
所有的对象共享这个成员函数,每一个对象有自己的对象成员,不会出现交叉
静态成员就没有this指针,使用这个成员可以使用;类的操作域进行访问这个静态成员。
这个就可以将全局的常量定义为static的格式。
用处:
- 描述和类相关参数,和对象无关
- 静态成员函数可以返回静态数据成员;静态成员函数操作静态成员
单例模式
class Str{static auto& size(){static Str x;return x;}}
6. 报错原因分析
为什么直接报错:/mnt/e/iCode/icpp/main.cpp:18: undefined reference to
Str1::x’`
#include <iostream>
class Str1{
public:static int x;int y;};
int main(){std::cout<<Str1::x<<std::endl;
}
修改如下运行成功
#include <iostream>
class Str1{
public:inline static int x;int y;
};
int main(){std::cout<<Str1::x<<std::endl;// 输出0
}
C++特性封装:举例子洗衣机的电路板
7. C++特殊的成员函数
构造函数
代理构造函数
构造函数是可以重载的
C++11的代理构造函数,代理构造函数先执行
代理构造函数如下:(基本不使用,仅仅了解即可)
\#include <iostream>
class Strp{
public:Strp():Strp(10){std::cout<<"here1"<<std::endl;}Strp(int input){x = input;std::cout<<"here2"<<std::endl;}
private:int x;
};int main(){Strp strp1;
}
构造函数初始化(重要)
初始化列表,不使用缺省初始化
区分数据成员的初始化和赋值
- 在构造的时候通过列表初始化完成,提升系统的性能
#include <iostream>
#include <string>class Strp {
public:Strp(const std::string &val) : x(val), y(0) {std::cout<<x<<std::endl;}private:std::string x;int y;
};int main() {Strp strp1("pf");
}
- 类中包含引用的成员,此时必须使用列表进行初始化
#include <iostream>
#include <string>class Strp {
public:Strp(const std::string &val,int& ref_i): x(val), y(0),ref(ref_i) {std::cout<<x<<std::endl;ref =2;}private:std::string x;int y;int& ref;
};int main() {int val;Strp strp1("pf",val);
}
-
元素的初始化顺序与其声明的顺序有关,与初始化列表中的顺序无关;
要求在初始化化列表时,顺序要一致,这里的一致就是先声明的先进行初始化,否则会包warnning
-
使用初始化列表覆盖类的内部的初始化信息
缺省的构造函数
-
不提供实参的构造函数
-
如果没有定义构造函数,编译器会提供一个缺省的构造函数,目的和C语言兼容,如果写一个就不会合成,如果类的成员中有引用成员,引用必须显示初始化。
-
缺省的构造函数会缺省构造函数进行缺省初始化。
-
调用缺省的构造函数避免(most vexing parse)
-
使用default定义,和内部的缺省的构造函数是一样的
举例子说明如下:
报错:
#include <iostream>
#include <string>class Strp {
public:
// Strp() = default;Strp(const std::string &input) : x(input) {}std::string x;
};int main() {
Strp s;
}
No matching constructor for initialization of ‘Strp’
#include <iostream>
#include <string>class Strp {
public:Strp() = default;Strp(const std::string &input) : x(input) {}std::string x;
};int main() {
Strp s;
}
不再进行报错
或者下面这样写,也不会报错
#include <iostream>
#include <string>class Strp {
public:Strp(){}Strp(const std::string &input) : x(input) {}std::string x;
};int main() {
Strp s;
}
单一的参数构造函数
-
可以将其看成是一种类型转换
-
可以使用explicit关键字避免求值过程中的隐式转换
#include <iostream> #include <string>class Myclass { public: // explicit Myclass(const int& input): x(input) {}int x; };int main() {Myclass my(3);// 直接参数列表进行初始化Myclass m1 = 3;// // 拷贝初始化,涉及到类型的隐式转换,避免隐式转换使用explicit进行标注Myclass m2{3};Myclass m3(Myclass(3));}
拷贝的构造函数(重要)
原有的对象来构造一个新的构造函数
不希望改变值,不能使用值传递,原因是会进行嵌套,死循环
- 拷贝构造函数的经典写法
- 如果没有显示提供拷贝构造函数,编译器会自动生成一个,对每一个数据成员调用拷贝构造
#include <iostream>
#include <string>class Myclass {
public:
// explicit // 全部考虑是引用传递,引用是对值的绑定
// 单一参数的构造函数Myclass(const int &input) : x(input) {}// 缺省的构造函数Myclass() = default;// 拷贝的构造函数的经典写法,为什么是const,为什么是引用
// Myclass(const Myclass&) = default;Myclass(const Myclass &m) : x(m.x) {// 这个也可以使用default}int x = 4;
};int main() {Myclass my(3);// 直接参数列表进行初始化Myclass m1 = 3;// // 拷贝初始化,涉及到类型的隐式转换,避免隐式转换使用explicit进行标注Myclass m2{3};Myclass m3(Myclass(3));}