C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

模型描述

DBO-BiTCN-BiGRU-Attention蜣螂算法是一个用于多变量回归预测的模型,它结合了多个神经网络层和注意力机制来提高预测的准确性。下面是对每个组件的简要解释:

DBO(Double Backtest Optimization)蜣螂算法:这是一种用于优化模型参数的算法,它通过反复进行回测和参数调整来寻找最佳的参数组合,以提高模型在历史数据上的表现。

BiTCN(Bidirectional Temporal Convolutional Network):这是一个双向时间卷积网络,用于从时间序列数据中提取特征。时间卷积层可以捕捉时间序列数据中的长期依赖关系,并生成具有时序信息的特征表示。

BiGRU(Bidirectional Gated Recurrent Unit):这是一个双向门控循环单元网络,用于学习时间序列数据中的时序模式。GRU是一种循环神经网络,可以有效地处理序列数据,并通过门控机制来控制信息的流动。

Attention(注意力机制):这是一种机制,用于在模型中对不同的输入元素分配不同的权重。注意力机制可以帮助模型集中关注对预测有更大贡献的输入元素,从而提高模型的准确性。

综合而言,DBO-BiTCN-BiGRU-Attention蜣螂算法将双向时间卷积、双向门控循环单元和注意力机制结合在一起,以实现对多变量时间序列数据的回归预测。通过优化参数和提取关键特征,该模型可以提高预测准确性,并在实际应用中具有潜力。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
%%  清空环境变量
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
warning off             % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
enddisp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')%%  初始化DBO参数
popsize = 20;                            %  初始种群规模
maxgen = 10;                             %  最大进化代数
fobj = @(x)objectiveFunction(x,f_,vp_train,vt_train,vp_test,T_test,ps_output);%%  优化算法参数设置
lb = [0.0001 10 20  0.00001];           %  参数的下限。分别是学习率,BiGRU的神经元个数,滤波器个数, 正则化参数
ub = [0.01 100 120 0.005];               %  参数的上限
dim = length(lb);%数量[Best_score,Best_pos,DBO_curve]=DBO(popsize,maxgen,lb,ub,dim,fobj);
setdemorandstream(pi);%%  将优化目标参数传进来的值 转换为需要的超参数
learning_rate = Best_pos(1);                   %  学习率
NumNeurons = round(Best_pos(2));               %  BiGRU神经元个数
numFilters = round(Best_pos(3));               %  滤波器个数
L2Regularization = Best_pos(4);                %  正则化参数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
endpFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/784447.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue.js基础指令

&#xff08;在讲指令之前&#xff0c;可以先了解插值表达式&#xff0c;如果已经知道&#xff0c;当我没说&#xff09; 一.插值表达式 1.数据绑定最常见的形式就是双大括号的文本插值&#xff0c;Mustache上属性的值替代。只要绑定的数据对象上属性发生了改变&#xff0c;插…

设置asp.net core WebApi函数请求参数可空的两种方式

以下面定义的asp.net core WebApi函数为例&#xff0c;客户端发送申请时&#xff0c;默认三个参数均为必填项&#xff0c;不填会报错&#xff0c;如下图所示&#xff1a; [HttpGet] public string GetSpecifyValue(string param1,string param2,string param3) {return $"…

Node.js中的导入导出

Node.js中的导入导出 一.CommonJs标准二.ECMAScript标准1.默认导入导出2.命名导出和导入 一.CommonJs标准 导出语法&#xff1a; module.exports {对外属性名: 模块内私有变量 }导入语法&#xff1a; const 变量名 require(模块名或路径) // Node.js 环境内置模块直接写模…

【PSINS工具箱】EKF与UKF滤波

描述 对工具箱SINS/GPS&#xff0c;153例程的修改&#xff0c;将EKF和UKF放在一个文件里面&#xff0c;一次运行可以得到两个滤波的结果。 片段 运行截图 程序完整源代码 在有工具箱的情况下&#xff0c;直接运行此代码&#xff0c;即可得到结果 % 基于PSINS工具箱的IMU数据…

腾讯云轻量2核2G3M云服务器优惠价格61元一年,限制200GB月流量

腾讯云轻量2核2G3M云服务器优惠价格61元一年&#xff0c;配置为轻量2核2G、3M带宽、200GB月流量、40GB SSD盘&#xff0c;腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图&#xff1a; 腾讯云轻量2核2G云服务器优惠价格 腾讯云&#xff1a;轻量应用服务器100%CPU性能…

pyqt 创建右键菜单栏

class MainModule(QMainWindow, Ui_MainWindow):def __init__(self):super().__init__(parentNone)self.setupUi(self)# 允许出现菜单栏self.tableWidget.setContextMenuPolicy(Qt.CustomContextMenu)# 对空间添加右键菜单栏处理 self.tableWidget.customContextMenuRequested.…

Java设计模式详解:单例模式

设计模式详解&#xff1a;单例模式 文章目录 设计模式详解&#xff1a;单例模式一、单例模式的原理二、单例模式的实现推荐1、饿汉模式2、静态内部类 三、单例模式的案例四、单例模式的使用场景推荐总结 一、单例模式的原理 单例模式听起来很高大上&#xff0c;但其实它的核心…

速盾:cdn可以加速接口吗?

随着互联网应用的不断发展&#xff0c;网站的访问速度成为了用户体验的重要指标之一。为了解决网站访问速度过慢的问题&#xff0c;CDN&#xff08;内容分发网络&#xff09;技术被广泛应用。CDN作为一种分布式的网络架构&#xff0c;可以将静态资源如图片、视频、JS、CSS等内容…

Mac 版 IDEA 中配置 GitLab

一、安装Git 在mac终端输入Git检测指令&#xff0c;可以通过git命令查看Git是否安装过&#xff0c;如果没有则会弹出安装按钮&#xff0c;如果安装过则会输出如下信息。 WMBdeMacBook-Pro:~ WENBO$ git usage: git [--version] [--help] [-C <path>] [-c namevalue][--…

6.5物联网RK3399项目开发实录-驱动开发之LCD显示屏使用(wulianjishu666)

90款行业常用传感器单片机程序及资料【stm32,stc89c52,arduino适用】 链接&#xff1a;https://pan.baidu.com/s/1M3u8lcznKuXfN8NRoLYtTA?pwdc53f LCD使用 简介 AIO-3399J开发板外置了两个LCD屏接口&#xff0c;一个是EDP&#xff0c;一个是LVDS&#xff0c;接口对应板…

拿到运营商给的IP池

如果你想要从checkip.amazonaws.com获取IP地址&#xff0c;然后统计不同IP地址的个数&#xff08;去除空格&#xff09;&#xff0c;以下是一个使用requests库的示例代码。你可以在你自己的环境中运行这个示例&#xff1a; import requests from collections import Counter# …

1.语言环境安装【go】

Go 语言支持以下系统: LinuxFreeBSDMac OS X(也称为 Darwin)Windows安装包下载地址为:All releases - The Go Programming Language。 如果打不开可以使用这个地址:All releases - The Go Programming Language。 UNIX/Linux/Mac OS X, 和 FreeBSD 安装 以下介绍了在UN…

算法编程:计算斐波那契数列

实现代码&#xff1a;C 实现方法&#xff1a;通过递推法、递归法、矩阵快速幂方法 适用&#xff1a; 范围小且单次查询时&#xff0c;可以不用记忆化处理。 范围大或多次查询时&#xff0c;应使用记忆化处理。 时间复杂度&#xff1a; 递归法&#xff1a;O(n^2)-->递推法(…

Meme币如何赋能Web3社交?

Meme 币正在迎来它的高光时刻。然而究其本质&#xff0c;在过去四年中&#xff0c;我们在 Crytpo 世界中所见证的只不过是一些相同的理念在不同的新媒介中的实现。例如社交代币、NFT 或者 Meme 币。它们的共同特征都是让那些共享的想法、资产或信息的金融化成为可能。参与这些市…

【AI学习指南】十、PyTorch-简洁、高效、易用的深度学习框架和简单使用

目录 简介 为什么说PyTorch节省算力 简单使用 安装 创建模型实例

【保姆级教程】YOLOv3图像目标检测:训练自己的数据集

一、YOLOv3图像目标检测原理 二、YOLOv3代码及预训练权重下载 2.1 下载yolov3代码 这里使用的是B站大佬Bubbliiiing复现的yolov3代码 仓库地址&#xff1a; https://github.com/bubbliiiing/yolo3-pytorch 2.2 下载模型预训练权重unet_resnet_medical.pth 链接&#xff1a…

【博弈论3——二人博弈的纳什均衡】

1.俾斯麦海之战 2. 零和博弈的定义 零和博弈&#xff08;Zero-Sum Game&#xff09;是一种博弈论的基本概念&#xff0c;指的是在博弈过程中&#xff0c;博弈参与者之间的收益和损失之和总是一个常数&#xff0c;特别是总和为零。即博弈一方的收益必然等于另一方的损失&#x…

贪吃蛇:从零开始搭建一个完整的小游戏

目录 导语&#xff1a; 一、游戏框架 二、蛇的实现 三、绘制游戏界面 四、食物 五、移动蛇 六.得分系统&#xff0c;是否吃到食物 七、检查碰撞 八、处理按键事件 九、得分系统 十、游戏状态管理 导语&#xff1a; 贪吃蛇这个经典的小游戏&#xff0c;我上学的时候就…

QT记事本

QT记事本 1.概述 2.界面  2.1 界面布局  2.2 UI美化stylesheet   2.2.1 准备   2.2.2 stylesheet   2.2.3 效果 2.3 窗口大小调整与子控件自适应 3.信号与槽  3.1 简述  3.2 信号与槽设置   3.2.1 UI控件设置   3.2.2 UI转到槽&#xff08;自动连接&am…