【PSINS工具箱】EKF与UKF滤波

描述

对工具箱SINS/GPS,153例程的修改,将EKF和UKF放在一个文件里面,一次运行可以得到两个滤波的结果。

片段

在这里插入图片描述

运行截图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

程序完整源代码

在有工具箱的情况下,直接运行此代码,即可得到结果

% 基于PSINS工具箱的IMU数据生成与滤波
% date:2024-2-15
% Evand(evandworld@qq.com)
% Ver1
clear;clc;close all;
glvs
psinstypedef(153);
ts = 0.1;       % sampling interval
%% 轨迹设置
avp0 = [[0;0;0]; [0;0;0]; [0;0;0]]; % init avp
% trajectory segment setting
traj_ = [];
seg = trjsegment(traj_, 'init',         0);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'accelerate',   10, traj_, 1);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'coturnleft',   45, 2, traj_, 4);
seg = trjsegment(seg, 'climb',        10, 2, traj_, 50);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'descent',      10, 2, traj_, 50);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'coturnleft',   45, 2, traj_, 4);
seg = trjsegment(seg, 'uniform',      100);
seg = trjsegment(seg, 'deaccelerate', 5,  traj_, 2); %2
seg = trjsegment(seg, 'uniform',      100);
% generate, save & plot
trj = trjsimu(avp0, seg.wat, ts, 1);
% trjfile('trj10ms.mat', trj);
%% 初始化
% initial settings
[nn, ts, nts] = nnts(2, trj.ts);
imuerr = imuerrset(0.03, 100, 0.001, 5);
imu = imuadderr(trj.imu, imuerr);
davp0 = avperrset([0.5;-0.5;20], 0.1, [1;1;3]);
ins = insinit(avpadderr(trj.avp0,davp0), ts);
% KF filter
rk = poserrset([1;1;3]);
kf = kfinit(ins, davp0, imuerr, rk);
kf.Pmin = [avperrset(0.01,1e-4,0.1); gabias(1e-3, [1,10])].^2;  kf.pconstrain=1;
len = length(imu); [avp_ekf, xkpk] = prealloc(fix(len/nn), 10, 2*kf.n+1);
timebar(nn, len, 'KF'); 
ki = 1;
for k=1:nn:len-nn+1k1 = k+nn-1;  wvm = imu(k:k1,1:6);  t = imu(k1,end);ins = insupdate(ins, wvm);kf.Phikk_1 = kffk(ins);kf = kfupdate(kf);if mod(t,1)==0posGPS = trj.avp(k1,7:9)' + davp0(7:9).*randn(3,1);  % GPS pos simulation with some white noisekf = kfupdate(kf, ins.pos-posGPS, 'M');[kf, ins] = kffeedback(kf, ins, 1, 'avp');avp_ekf(ki,:) = [ins.avp', t];xkpk(ki,:) = [kf.xk; diag(kf.Pxk); t]';  ki = ki+1;endtimebar;
end
avp_ekf(ki:end,:) = [];  xkpk(ki:end,:) = []; 
%% EKF show results
insplot(avp_ekf);
avperr = avpcmpplot(trj.avp, avp_ekf);
kfplot(xkpk, avperr, imuerr);%% UKF filter
glvs
% psinstypedef('test_SINS_GPS_UKF_153_def');
[nn, ts, nts] = nnts(2, trj.ts);
imuerr = imuerrset(0.03, 100, 0.001, 5);
imu = imuadderr(trj.imu, imuerr);
davp0 = avperrset([0.5;-0.5;20], 0.1, [1;1;3]);
ins = insinit(avpadderr(trj.avp0,davp0), ts);rk = poserrset([1;1;3]);
kf = kfinit(ins, davp0, imuerr, rk);
kf.fx = @largephiu15ukf;
len = length(imu); [avp_ukf, xkpk] = prealloc(fix(len/nn), 10, 2*kf.n+1);
timebar(nn, len, '15-state SINS/GPS UKF仿真,时间较长'); 
ki = 1;
for k=1:nn:len-nn+1k1 = k+nn-1;  wvm = imu(k:k1,1:6);  t = imu(k1,end);ins = insupdate(ins, wvm);kf.px = ins;kf = ukf(kf);if mod(t,1)==0posGPS = trj.avp(k1,7:9)' + davp0(7:9).*randn(3,1);  % GPS pos simulation with some white noisekf = ukf(kf, ins.pos-posGPS, 'M');  % UKF filter[kf, ins] = kffeedback(kf, ins, 1, 'avp');avp_ukf(ki,:) = [ins.avp', t];xkpk(ki,:) = [kf.xk; diag(kf.Pxk); t]';  ki = ki+1;endtimebar;
end
avp_ukf(ki:end,:) = [];  xkpk(ki:end,:) = []; %% results
insplot(trj.avp);
imuplot(trj.imu);
figure;
plot3(trj.avp(:,7),trj.avp(:,8),trj.avp(:,9));
hold on
plot3(trj.avp(1,7),trj.avp(1,8),trj.avp(1,9),'*');
plot3(avp_ekf(:,7),avp_ekf(:,8),avp_ekf(:,9));
plot3(avp_ukf(:,7),avp_ukf(:,8),avp_ukf(:,9));
title('原创——3D轨迹图');
legend('真实值','起点','EKF滤波值','UKF滤波值');
% 误差绘图
% 误差曲线图与累积分布函数图,两种情况、三轴
figure;
subplot(3,2,1);
plot(1:10:len,avp_ekf(:,7)-trj.avp(1:10:len,7),1:10:len,avp_ukf(:,7)-trj.avp(1:10:len,7));
title('原创——X轴位置误差对比');legend('EKF滤波值','UKF滤波值');
subplot(3,2,3);
plot(1:10:len,avp_ekf(:,8)-trj.avp(1:10:len,8),1:10:len,avp_ukf(:,8)-trj.avp(1:10:len,8));
subplot(3,2,5);
plot(1:10:len,avp_ekf(:,9)-trj.avp(1:10:len,9),1:10:len,avp_ukf(:,9)-trj.avp(1:10:len,9));
subplot(3,2,2);
cdfplot(abs(avp_ekf(:,7)-trj.avp(1:10:len,7)));
hold on
cdfplot(abs(avp_ukf(:,7)-trj.avp(1:10:len,7)));
subplot(3,2,4);
cdfplot(abs(avp_ekf(:,8)-trj.avp(1:10:len,8)));
hold on
cdfplot(abs(avp_ukf(:,8)-trj.avp(1:10:len,8)));
subplot(3,2,6);
cdfplot(abs(avp_ekf(:,9)-trj.avp(1:10:len,9)));
hold on
cdfplot(abs(avp_ukf(:,9)-trj.avp(1:10:len,9)));
%% 误差输出
fprintf('ekf X轴位置误差最大值%d\n',max(abs(avp_ekf(:,7)-trj.avp(1:10:len,7))));
fprintf('ekf Y轴位置误差最大值%d\n',max(abs(avp_ekf(:,8)-trj.avp(1:10:len,8))));
fprintf('ekf Z轴位置误差最大值%d\n',max(abs(avp_ekf(:,9)-trj.avp(1:10:len,9))));
fprintf('ukf X轴位置误差最大值%d\n',max(abs(avp_ukf(:,7)-trj.avp(1:10:len,7))));

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/784443.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯云轻量2核2G3M云服务器优惠价格61元一年,限制200GB月流量

腾讯云轻量2核2G3M云服务器优惠价格61元一年,配置为轻量2核2G、3M带宽、200GB月流量、40GB SSD盘,腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图: 腾讯云轻量2核2G云服务器优惠价格 腾讯云:轻量应用服务器100%CPU性能…

pyqt 创建右键菜单栏

class MainModule(QMainWindow, Ui_MainWindow):def __init__(self):super().__init__(parentNone)self.setupUi(self)# 允许出现菜单栏self.tableWidget.setContextMenuPolicy(Qt.CustomContextMenu)# 对空间添加右键菜单栏处理 self.tableWidget.customContextMenuRequested.…

Mac 版 IDEA 中配置 GitLab

一、安装Git 在mac终端输入Git检测指令&#xff0c;可以通过git命令查看Git是否安装过&#xff0c;如果没有则会弹出安装按钮&#xff0c;如果安装过则会输出如下信息。 WMBdeMacBook-Pro:~ WENBO$ git usage: git [--version] [--help] [-C <path>] [-c namevalue][--…

6.5物联网RK3399项目开发实录-驱动开发之LCD显示屏使用(wulianjishu666)

90款行业常用传感器单片机程序及资料【stm32,stc89c52,arduino适用】 链接&#xff1a;https://pan.baidu.com/s/1M3u8lcznKuXfN8NRoLYtTA?pwdc53f LCD使用 简介 AIO-3399J开发板外置了两个LCD屏接口&#xff0c;一个是EDP&#xff0c;一个是LVDS&#xff0c;接口对应板…

算法编程:计算斐波那契数列

实现代码&#xff1a;C 实现方法&#xff1a;通过递推法、递归法、矩阵快速幂方法 适用&#xff1a; 范围小且单次查询时&#xff0c;可以不用记忆化处理。 范围大或多次查询时&#xff0c;应使用记忆化处理。 时间复杂度&#xff1a; 递归法&#xff1a;O(n^2)-->递推法(…

【保姆级教程】YOLOv3图像目标检测:训练自己的数据集

一、YOLOv3图像目标检测原理 二、YOLOv3代码及预训练权重下载 2.1 下载yolov3代码 这里使用的是B站大佬Bubbliiiing复现的yolov3代码 仓库地址&#xff1a; https://github.com/bubbliiiing/yolo3-pytorch 2.2 下载模型预训练权重unet_resnet_medical.pth 链接&#xff1a…

【博弈论3——二人博弈的纳什均衡】

1.俾斯麦海之战 2. 零和博弈的定义 零和博弈&#xff08;Zero-Sum Game&#xff09;是一种博弈论的基本概念&#xff0c;指的是在博弈过程中&#xff0c;博弈参与者之间的收益和损失之和总是一个常数&#xff0c;特别是总和为零。即博弈一方的收益必然等于另一方的损失&#x…

贪吃蛇:从零开始搭建一个完整的小游戏

目录 导语&#xff1a; 一、游戏框架 二、蛇的实现 三、绘制游戏界面 四、食物 五、移动蛇 六.得分系统&#xff0c;是否吃到食物 七、检查碰撞 八、处理按键事件 九、得分系统 十、游戏状态管理 导语&#xff1a; 贪吃蛇这个经典的小游戏&#xff0c;我上学的时候就…

QT记事本

QT记事本 1.概述 2.界面  2.1 界面布局  2.2 UI美化stylesheet   2.2.1 准备   2.2.2 stylesheet   2.2.3 效果 2.3 窗口大小调整与子控件自适应 3.信号与槽  3.1 简述  3.2 信号与槽设置   3.2.1 UI控件设置   3.2.2 UI转到槽&#xff08;自动连接&am…

Jamba LLM模型:破解大型上下文窗口挑战的AI新星

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

JBPM学习(三):管理流程定义,java集合面试题

Test public void findAll() { // 查询 List list processEngine.getRepositoryService()// .createProcessDefinitionQuery()// .orderAsc(ProcessDefinitionQuery.PROPERTY_KEY)//排序条件 //.count()查询出总数量 //.page(0, 100)分页&#xff0c;取出前100条记录 …

【漏洞复现】WordPress Plugin LearnDash LMS 敏感信息暴漏

漏洞描述 WordPress和WordPress plugin都是WordPress基金会的产品。WordPress是一套使用PHP语言开发的博客平台。该平台支持在PHP和MySQL的服务器上架设个人博客网站。WordPress plugin是一个应用插件。 WordPress Plugin LearnDash LMS 4.10.2及之前版本存在安全漏洞&#x…

遥感动态监测技术

很多人对动态监测和动态检测两个名词有疑惑。我们可以这样理解&#xff0c;动态监测是一个广义的名词&#xff0c;泛指数据预处理、变化信息发现与提取、变化信息挖掘与应用等&#xff0c;以对整个流程的叙述。动态检测是一个狭义的名词&#xff0c;主要指部分数据预处理、变化…

C++list的模拟实现

为了实现list&#xff0c;我们需要实现三个类 一、List的节点类 template<class T> struct ListNode {ListNode(const T& val T()):_pPre(nullptr),_pNext(nullptr),_val(val){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val; }; 二、List的迭代器…

JAVAEE之CSS

1.CSS 是什么&#xff1f; 层叠样式表 (Cascading Style Sheets). CSS 能够对网页中元素位置的排版进行像素级精确控制, 实现美化页面的效果. 能够做到页面的样式和结构分离. 1.1 CSS和HTML的区别 CSS&#xff0c;全称为层叠样式表(Cascading Style Sheets)&#xff0c;是…

RocketMQ(版本4.9.4)+RocketMQ_Dashbord环境搭建(生产者、消费者的前置环境搭建)

一、官方网站下载 RocketMQ源码包 https://rocketmq.apache.org/zh/docs/4.x/introduction/02quickstart 二、把rocketMQ上传到Linux环境下解压&#xff0c;编译&#xff0c;执行以下命令&#xff08;需要提前装jdk和maven并配置好环境变量&#xff09; unzip rocketmq-all-4…

AtCoder Beginner Contest 347 (ABCDEF题)视频讲解

A - Divisible Problem Statement You are given positive integers N N N and K K K, and a sequence of length N N N, A ( A 1 , A 2 , … , A N ) A(A_1,A_2,\ldots,A_N) A(A1​,A2​,…,AN​). Extract all elements of A A A that are multiples of K K K, divi…

计算机的组成原理

1.简单常识介绍 1.1认识一下计算机的真实相貌 1.2怎么通过电信号传二进制 工作原理 cpu的针脚也就跟我们的手指一样用来接收高低电频&#xff0c;来判断2进制数据 cpu和数据交互的原理 2.计算机系统 软件介绍 硬件的发展历史 电子管时代 晶体管时代 中小规模集成电路 大规模…

C#(winform) 调用MATLAB函数

测试环境 VisualStudio2022 / .NET Framework 4.7.2 Matlab2021b 参考&#xff1a;C# Matlab 相互调用 Matlab 1、编写Matlab函数 可以没有任何参数单纯定义matlab处理的函数&#xff0c;输出的数据都存在TXT中用以后期读取数据 function [result,m,n] TEST(list) % 计算…

Uibot6.0 (RPA财务机器人师资培训第6天 )发票验真机器人案例实战

类似于小北的这篇博客&#xff1a;Uibot (RPA设计软件&#xff09;Mage AI智能识别&#xff08;发票识别&#xff09;———课前材料五_uibot 添加mageai-CSDN博客https://blog.csdn.net/Zhiyilang/article/details/135591297?spm1001.2014.3001.5501训练网站&#xff1a;泓江…