【4】单链表(有虚拟头节点)

【4】单链表(有虚拟头节点)

  • 1、虚拟头节点
  • 2、构造方法
  • 3、node(int index) 返回索引位置的节点
  • 4、添加
  • 5、删除
  • 6、ArrayList 复杂度分析
    • (1) 复杂度分析
    • (2) 数组的随机访问
    • (3) 动态数组 add(E element) 复杂度分析
    • (4) 动态数组的缩容
    • (5) 复杂度震荡
  • 7、单链表复杂度分析
  • 8、完整代码

1、虚拟头节点

📕 为了让代码更精简,统一所有节点的处理逻辑,可以在最前面增加一个虚拟头节点

🖊 头指针指向的永远是虚拟头节点
🖊 虚拟头节点不存储数据

在这里插入图片描述

2、构造方法

📕 在 单链表 代码的基础上需要进行修改

🖊 头指针 first 永远指向虚拟头节点,所以在 VirtualHeadLinkedList 的构造方法中要让 first 指针虚拟头节点

    public VirtualHeadLinkedList() {// 头指针指向虚拟头节点// 虚拟头节点的next默认指向nullfirst = new Node<>(null, null);}

3、node(int index) 返回索引位置的节点

🖊 该方法会返回索引位置的节点,它原本的实现思路是:若需要 index 位置的节点,则从 first 头指针指向的头节点开始 next index

🖊 加入了虚拟头节点后,就不能从 first 头指针指向的头节点开始 next index 次了,而是从虚拟头节点next 指向的节点开始 next

    /*** 返回index索引处的节点*/private Node<E> node(int index) {checkIndex(index);// first头指针指向的是虚拟头节点// first.next就是具体存储数据的第一个节点Node<E> node = first.next;for (int i = 0; i < index; i++) {node = node.next;}return node;}

4、添加

🖊 之前的添加逻辑:
① 假如是往头节点位置添加元素:first 指向新节点,新节点的 next 指向之前的头节点
② 若不是往头节点位置添加元素:找到 index-1 索引处的节点 prev,然后新节点的 next 指向 prev.next,然后 prev.next 指向新节点

🖊 增加虚拟头节点后: 如果 index == 0prev 就是虚拟头节点(first)

    /*** 往索引位置添加元素*/@Overridepublic void add(int index, E element) {checkIndex4Add(index);// 如果index==0, prev是虚拟头节点Node<E> prev = (index == 0) ? first : node(index - 1);prev.next = new Node<>(element, prev.next);size++;}

5、删除

🖊 假如删除的是 index == 0 位置的节点,则 prev 就是虚拟头节点

    /*** 删除索引位置的元素** @return 被删除的元素*/@Overridepublic E remove(int index) {checkIndex(index);Node<E> prev = (index == 0) ? first : node(index - 1);Node<E> node = prev.next;prev.next = node.next;size--;return node.element;}

6、ArrayList 复杂度分析

(1) 复杂度分析

最好情况复杂度
最坏情况复杂度
平均情况复杂度

方法复杂度
getO(1)
setO(1)
add① 最好:O(1)
② 最坏:O(n)
③ 平均:O(n)
remove① 最好:O(1)
② 最坏:O(n)
③ 平均:O(n)

📕 add
🖊 假如 index == size(往最后面添加元素):无需挪动元素(时间复杂度是 O(1)最好时间复杂度
🖊 假如 index == 0:整个数组需要往后挪动(时间复杂度是 O(n)最坏时间复杂度
🖊 平均时间复杂度:(1 + 2 + ... + n) / n = n/2挪动1次、2次、...、 n次

(2) 数组的随机访问

在这里插入图片描述

🖊 数组的随机访问速度非常快
🖊 elements[n] 的效率与 n 是多少无关

📕 假设存放的是 int 类型的元素(每个元素的地址相差四个字节):
🖊 地址值 = index * 4 + 数组首元素的地址

(3) 动态数组 add(E element) 复杂度分析

◼ 最好:O(1)
◼ 最坏:O(n)
◼ 平均:O(1)
◼ 均摊:O(1)

🖊 add(E element) 永远是往数组的最后面添加元素,可能会有扩容的情况产生
🖊 扩容的时间复杂度是 O(n)在这里插入图片描述
🖊 但是该方法大部分情况下的时间复杂度都是 O(1),只有极少数情况是O(n)【均摊复杂度】

📕 什么情况下适合使用均摊复杂度❓
🖊经过连续的多次复杂度比较低的情况后,出现个别复杂度比较高的情况

在这里插入图片描述

(4) 动态数组的缩容

📕 如果内存使用比较紧张,动态数组有比较多的剩余空间,可以考虑进行缩容操作
🖊 比如剩余空间占总容量的一半时,就进行缩容

  /*** 缩容*/private void trim() {// 当前容量:elements数组最多可以存储的元素个数int curCap = elements.length;int newCap = curCap >> 1;if (size >= newCap || newCap <= DEFAULT_CAPACITY) return; // 不缩容E[] newElements = (E[]) new Object[newCap];// 把旧数组元素复制到新数组中for (int i = 0; i < size; i++) {newElements[i] = elements[i];}elements = newElements;System.out.println("🖊缩容:" + curCap + "→" + newCap);}

(5) 复杂度震荡

📕 如果扩容倍数、缩容时机设计不得当,有可能会导致复杂度震荡
在这里插入图片描述

🖊 上图假如一直执行增、删、增、删、增、删…操作的话,就会出现扩容、缩容、扩容、缩容、扩容、缩容…的情况
🖊 出现此情况是因为:扩容为2倍(2)和剩余空间大于等于总容量一半(1/2)的时候缩容【扩容倍数和缩容时机的乘积不要等于1】

7、单链表复杂度分析

方法复杂度
get① 最好:O(1)
② 最坏:O(n)
③ 平均:O(n)
set① 最好:O(1)
② 最坏:O(n)
③ 平均:O(n)
add① 最好:O(1)
② 最坏:O(n)
③ 平均:O(n)
remove① 最好:O(1)
② 最坏:O(n)
③ 平均:O(n)

🖊 单链表效率比较低主要是因为 node(int index) 方法,它有 for 循环(数据规模可能是 n

在这里插入图片描述

在这里插入图片描述

🖊 有的资料说链表添加和删除的复杂度是O(1),这说的是添加和删除的 “哪一刻”,但找到 prev 的时间复杂度可能是 O(n)
在这里插入图片描述
在这里插入图片描述

8、完整代码

🖊 带有虚拟头节点的单链表完整代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/783186.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3.两数相加 - 链表

文章目录 题目简介题目解答代码&#xff1a; 题目链接 大家好&#xff0c;我是晓星航。今天为大家带来的是 两数相加 相关的讲解&#xff01;&#x1f600; 题目简介 题目解答 通过题目给的第一个示例来解析 图解如下&#xff1a; l1的2和l2的5首先相加变为7 这里相加结果为7…

Ubuntu18.04安装wireshark

安装wireshark 环境Ubuntu18.04 1.使用root用户进行安装 2.将 wireshark-dev/stable PPA 添加到系统的软件源列表中。系统就可以从该PPA获取Wireshark软件包及其更新了。 apt-add-repository ppa:wireshark-dev/stable3.确保你系统上的软件包信息是最新的&#xff0c;这样在…

Yarn - macOS 上安装使用

文章目录 关于 YarnYarn 工作流程安装检查安装、查看版本 常用命令 关于 Yarn Yarn 是一款成熟的开源软件包管理器&#xff0c;用于管理 JavaScript 项目中的依赖关系。 官网&#xff1a;https://yarnpkg.comgithub : https://github.com/yarnpkg官方文档&#xff1a;https:/…

高炉项目中DeviceNET到Ethernet的转换奥秘

在工业自动化的世界中&#xff0c;高炉项目中的数据通信至关重要。其中DeviceNET和Ethernet作为两种主流的网络协议&#xff0c;扮演着不可或缺的角色。它们之间的转换不仅仅是技术上的桥梁&#xff0c;更是实现信息高效传递的关键。今天&#xff0c;我们就来揭开从DeviceNET到…

数据结构——lesson13排序之计数排序

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…

Java 中的单例模式

引言&#xff1a; 在 Java 编程中&#xff0c;单例模式是一种常见的设计模式&#xff0c;它保证一个类只能创建一个实例&#xff0c;并提供一个全局访问点。单例模式在很多场景下都非常有用&#xff0c;比如线程池、日志系统、数据库连接池等。本文将详细介绍 Java 中单例模式的…

操作教程|在MeterSphere中通过SSH登录服务器的两种方法

MeterSphere开源持续测试平台拥有非常强大的插件集成机制&#xff0c;用户可以通过插件实现平台能力的拓展&#xff0c;借助插件或脚本实现多种功能。在测试过程中&#xff0c;测试人员有时需要通过SSH协议登录至服务器&#xff0c;以获取某些配置文件和日志文件&#xff0c;或…

知乎:多云架构下大模型训练,如何保障存储稳定性?

知乎&#xff0c;中文互联网领域领先的问答社区和原创内容平台&#xff0c;2011 年 1 月正式上线&#xff0c;月活跃用户超过 1 亿。平台的搜索和推荐服务得益于先进的 AI 算法&#xff0c;数百名算法工程师基于数据平台和机器学习平台进行海量数据处理和算法训练任务。 为了提…

在 Linux中解压,压缩命令详解

在 Linux中解压&#xff0c;压缩命令详解 在 Linux中解压&#xff0c;压缩命令详解 &#x1f427;&#x1f4bb;摘要引言正文内容解压命令详解1. 解压 .zip 文件unzip 命令 2. 解压 .tar.gz、.tar.bz2、.tar.xz 文件tar 命令 3. 解压其他格式的压缩文件gzip 命令bzip2 命令 压…

哥本哈根Major后steam搬砖该何去何从?

都在问我哥本哈根major比赛过后市场会不会崩盘呢&#xff1f;说实话&#xff0c;我是不喜欢预测市场的&#xff0c;其实是没那个本事而已。若真有这个预测市场走势的本事&#xff0c;我还用坐在这里每天苦哈哈的搬砖吗&#xff1f;我直接干囤卡囤号的倒卖生意岂不早发财了&…

宝塔面板与1Panel的详细对比分析

在当今的服务器管理领域&#xff0c;宝塔面板和1Panel都是备受欢迎的管理工具。它们各自具有独特的特点和优势&#xff0c;同时也存在一些局限性。本文将从多个维度对比这两款产品&#xff0c;帮助用户根据自身需求做出更合适的选择。 宝塔面板 优点 易用性&#xff1a;宝塔…

九州金榜|孩子厌学应该怎么引导?

孩子厌学&#xff0c;这是许多家长都可能面临的问题。对于这个问题&#xff0c;我们首先要明白&#xff0c;厌学并非孩子的错&#xff0c;而是他们在成长过程中所遇到的一种困境。那么&#xff0c;作为家长&#xff0c;我们应该如何引导他们走出这个困境呢&#xff1f;下面九州…

深入浅出:探索Hadoop生态系统的核心组件与技术架构

目录 前言 HDFS Yarn Hive HBase Spark及Spark Streaming 书本与课程推荐 关于作者&#xff1a; 推荐理由&#xff1a; 作者直播推荐&#xff1a; 前言 进入大数据阶段就意味着 进入NoSQL阶段&#xff0c;更多的是面向OLAP场景&#xff0c;即数据仓库、BI应用等。 …

【博弈论——2探究纳什均衡】

1.纳什均衡 纳什均衡&#xff08;Nash Equilibrium&#xff09;&#xff0c;由美国数学家约翰纳什&#xff08;John Nash&#xff09;提出&#xff0c;是博弈论中的一个重要概念&#xff0c;用来描述在一个非合作博弈中&#xff0c;各个参与者在考虑了其他所有参与者策略的前提…

分享 | 顶刊高质量论文插图配色(含RGB值及16进制HEX码)(第三期)

第三期顶刊绘图配色分享来啦&#xff01;这一期做的细心了一点&#xff0c;把双色配色、三色配色、四色配色、多色配色分开展示&#xff0c;大家用起来会更方便一点&#xff1a; 这次还是用之前写了一个多小时的提取论文图片颜色并得出RGB值和16进制码并标注在原图的代码&…

探索c++:string常用接口 迷雾

个人主页&#xff1a;日刷百题 系列专栏&#xff1a;〖C/C小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 &#x1f30e;欢迎各位→点赞&#x1f44d;收藏⭐️留言&#x1f4dd; ​ ​ 一、string类 这里我们对string类进行一个简单的总结&#xff1a; string是表示字符串的字…

矩阵间关系的建立

参考文献 2-D Compressive Sensing-Based Visually Secure Multilevel Image Encryption Scheme 加密整体流程如下: 我们关注左上角这一部分: 如何在两个图像之间构建关系,当然是借助第3个矩阵。 A. Establish Relationships Between Different Images 简单说明如下: …

R语言 | 上下双向柱状图

1. 效果图 2. 代码 # 生成测试数据 difdata.frame(labelspaste0("pathway", 1:3),upc(30,15,1),downc(10,20,40) ) rownames(dif)dif$labels dif#变形 difreshape2::melt(dif) dif# 绘图 ggplot(dif, aes(xlabels, yifelse(variable"up", value, -value), …

react 面试题(2024 最新版)

1. 对 React 的理解、特性 React 是靠数据驱动视图改变的一种框架&#xff0c;它的核心驱动方法就是用其提供的 setState 方法设置 state 中的数据从而驱动存放在内存中的虚拟 DOM 树的更新 更新方法就是通过 React 的 Diff 算法比较旧虚拟 DOM 树和新虚拟 DOM 树之间的 Chan…