Python实现猎人猎物优化算法(HPO)优化Catboost分类模型(CatBoostClassifier算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的优化搜索算法。受到捕食动物(如狮子、豹子和狼)和猎物(如雄鹿和瞪羚)的行为的启发,他们根据猎人和猎物的位置移动方法设计了一种新型的搜索方式及自适应度更新的方法。

本项目通过HPO猎人猎物优化算法优化Catboost分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

 

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:   

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建HPO猎人猎物优化算法优化CATBOOST分类模型

主要使用HPO猎人猎物优化算法优化CATBOOST分类算法,用于目标分类。

6.1 HPO猎人猎物优化算法寻找最优的参数值   

最优参数:

 

6.2 最优参数值构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.9231,说明模型效果较好。

关键代码如下:

7.2 分类报告

  

从上图可以看出,分类为0的F1分值为0.94;分类为1的F1分值为0.92。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有7个样本;实际为1预测不为1的 有7个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了HPO猎人猎物优化算法寻找CATBOOST算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

def __init__(self, m, T, lb, ub, R, C, X_train, y_train, X_test, y_test):self.M = m  # 种群个数self.T = T  # 迭代次数self.lb = lb  # 下限self.ub = ub  # 上限self.R = R  # 行self.C = C  # 列self.b = 0.1  # 调节参数self.X_train = X_train  # 训练集特征self.X_test = X_test  # 测试集特征self.y_train = y_train  # 训练集标签self.y_test = y_test  # 测试集标签# ******************************************************************************# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1-P7LMzRZysEV1WgmQCpp7A # 提取码:5fv7# ******************************************************************************# 提取特征变量和标签变量
y = df['y']
X = df.drop('y', axis=1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/78273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于BLIP-2的看图问答原理及实现

大型语言模型 (LLM) 最近获得了很大的关注,出现了许多流行的模型,如 GPT、OPT、BLOOM 等。 这些模型擅长学习自然语言,非常适合构建聊天机器人、编码助手、决策助手或翻译系统。 然而,他们缺乏其他模式的知识—例如,他…

GIS地图服务数据可视化

GIS地图服务数据可视化 OSM(Open Street Map,开放街道地图)Bing地图(必应地图)Google地图(谷歌地图) 地图服务数据可视化是根据调用的地图服务请求Web服务器端的地图数据,实现地图数…

python自学

自学第一步 第一个简单的基础,向世界说你好 启动python 开始 print是打印输出的意思,就是输出引号内的内容。 标点符号必须要是英文的,因为他只认识英文的标点符号。 exit()推出python。 我们创建一个文本文档&…

Nginx参数配置详细说明【全局、http块、server块、events块】【已亲测】

Nginx重点参数配置说明 本文包含Nginx参数配置说明全局块、http块、server块、events块共计30多个参数配置与解释,其中常见参数包含配置错误出现的错误日志,能让你更快的解决问题。 该文的所有参数大部分经过单独测试,错误都是自己收集出来的…

如何将安防视频监控系统/视频云存储EasyCVR平台推流到公网直播间?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、…

基于PyTorch使用LSTM实现新闻文本分类任务

本文参考 PyTorch深度学习项目实战100例 https://weibaohang.blog.csdn.net/article/details/127154284?spm1001.2014.3001.5501 文章目录 本文参考任务介绍做数据的导入 环境介绍导入必要的包介绍torchnet和keras做数据的导入给必要的参数命名加载文本数据数据前处理模型训…

防火墙概述及实战

目录 前言 一、概述 (一)、防火墙分类 (二)、防火墙性能 (三)、iptables (四)、iptables中表的概念 二、iptables规则匹配条件分类 (一)、基本匹配条…

sklearn中的数据集使用

导库 from sklearn.datasets import load_iris 实现 # 加载数据集 iris load_iris() print(f查看数据集:{iris}) print(f查看数据集的特征:{iris.feature_names}) print(f查看数据集的标签:{iris.target_names}) print(f查看数据集的描述…

看板管理:以可视化方式确定任务优先级

确定工作的优先级是我们今天都要面对的挑战。若处理不当,我们就可能试图一心多用,从而严重损害工作效率。 使用看板方法来设定工作优先级是一种非常直观、快速的方法。 确定工作优先级的看板方法 看板工作流程管理方法的核心在于工作可视化。工作被划…

Elasticsearch:什么是生成式人工智能?

生成式人工智能定义 给学生的解释(基本): 生成式人工智能是一种可以创造新的原创内容的技术,例如艺术、音乐、软件代码和写作。 当用户输入提示时,人工智能会根据从互联网上现有示例中学到的知识生成响应,…

记录vite下使用require报错和解决办法

前情提要 我们现在项目用的是vite4react18开发的项目、但是最近公司有个睿智的人让我把webpack中的bpmn组件迁移过来、结果就出现问题啦:因为webpack是commonjs规范、但是vite不是、好像是es吧、可想而知各种报错 废话不多说啦 直接上代码: 注释是之前c…

【Spring】手动实现Spring底层机制-问题的引出

🎄欢迎来到边境矢梦的csdn博文🎄 🎄本文主要梳理手动实现Spring底层机制-问题的引出 🎄 🌈我是边境矢梦,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下&#x1…

工厂设计模式

github:GitHub - QiuliangLee/pattern: 设计模式 概念 根据产品是具体产品还是具体工厂可分为简单工厂模式和工厂方法模式,根据工厂的抽象程度可分为工厂方法模式和抽象工厂模式。 简单工厂模式、工厂方法模式和抽象工厂模式有何区别? - 知…

一点整理

(1) 美国在2010年以后开始流行数字化转型的。 在2010年以前, 2006年社交网络FB “YOU”:在2004-2006 Web2.0热之前,企业是无法直接触达到每个消费者的2006年Amazon电子商务:这个是我瞎凑的,但因…

运算放大器学习笔记

目录 一、基本定理二、基本定义三、负反馈电路四、同向放大电路五、反向放大电路六、差分放大电路 一、基本定理 【电路示意图】 开环放大公式 VOAvo(V-V-) 开环放大倍数(增益)非常大,105 或 106 输入阻抗超级大(可以理解为电…

八股文学习一(存储)

一. 存储 行式存储的原理与特点 对于 OLAP 场景,大多都是对一整行记录进行增删改查操作的,那么行式存储采用以行的行式在磁盘上存储数据就是一个不错的选择。 当查询基于需求字段查询和返回结果时,由于这些字段都埋藏在各行数据中&#xf…

Uniapp学习之从零开始写一个简单的小程序demo(新建页面,通过导航切换页面,发送请求)

先把官网文档摆在这,后面会用到的 [uniapp官网文档]: https://uniapp.dcloud.net.cn/vernacular.html# 一、开发工具准备 1-1 安装HBuilder 按照官方推荐,先装一个HBuilder 下载地址: https://www.dcloud.io/hbuilderx.html1-2 安装微信开…

chrome插件:一个基于webpack + react的chrome 插件项目模板

项目结构 $ tree -L 1 . ├── README.md ├── node_modules # npm依赖 ├── package.json # 详细依赖 ├── pnpm-lock.yaml ├── public # 里边包含dist,安装的时候安装这个目录即可 ├── src …

postgre 12.11单实例安装文档

一 下载 访问https://www.postgresql.org/download/,点击左侧的‘source进行下载,一般选择bz2的安装包。 二 安装 这里安装12.11版本的postgre,数据目录路径为/data/server/pgdata,端口为5432. 2.1 安装依赖包 #安装 yum in…

C++信息学奥赛1171:大整数的因子

该程序是一个寻找能够整除输入数字的最小正整数的程序。下面是代码的逻辑解析&#xff1a; #include <iostream> #include <string> #include <cstring>using namespace std;int main() {string n; // 定义一个字符串变量nint fale 0; // 用于标记是否能…