aeon,一个好用的 Python 库!

83bd818f9b9a026ea7e97c723dcaec1c.png

更多Python学习内容:ipengtao.com

大家好,今天为大家分享一个好用的 Python 库 - aeon

Github地址:https://github.com/aeon-toolkit/aeon


在现代计算机科学和人工智能领域,处理时间序列数据是一个重要而复杂的任务。Python aeon库应运而生,它为开发者提供了强大的工具和方法来处理时间序列数据,从而在数据分析、机器学习和预测等方面发挥重要作用。本文将深入探讨aeon库的特性、安装方法、基本功能、高级功能、实际应用场景以及总结,带领读者进入异世界般的时间序列数据处理领域。

安装

安装aeon库可以使用pip命令:

pip install aeon

安装完成后,就可以开始使用aeon库了。

特性

  • 提供了多种时间序列数据处理方法,如时间序列重采样、滑动窗口处理、时序预测等。

  • 支持多种常见时间序列数据格式,如CSV、JSON、Pandas DataFrame等。

  • 具有高效且灵活的时间序列数据处理和操作接口。

基本功能

1. 时间序列重采样

时间序列重采样是时间序列数据处理中常用的方法之一,aeon库提供了灵活的重采样功能,示例代码如下:

import aeon
import pandas as pd# 创建一个示例时间序列数据
data = {'date': pd.date_range(start='2022-01-01', end='2022-01-10', freq='D'), 'value': [10, 20, 15, 30, 25, 35, 40, 45, 50, 55]}
df = pd.DataFrame(data)# 对时间序列数据进行按月重采样
resampled_df = aeon.resample(df, rule='M', on='date')
print(resampled_df)

2. 滑动窗口处理

在时间序列数据分析中,滑动窗口处理是一种常见的技术,可以用来计算滑动窗口内的统计指标或进行滑动窗口预测,示例代码如下:

import aeon
import pandas as pd# 创建一个示例时间序列数据
data = {'date': pd.date_range(start='2022-01-01', periods=10, freq='D'), 'value': [10, 20, 15, 30, 25, 35, 40, 45, 50, 55]}
df = pd.DataFrame(data)# 使用滑动窗口计算均值
window_size = 3
df['rolling_mean'] = aeon.rolling_mean(df['value'], window=window_size)
print(df)

高级功能

1. 时序预测

aeon库提供了强大的时序预测功能,可以使用多种机器学习模型进行时序数据的预测和分析,示例代码如下:

import aeon
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 创建一个示例时间序列数据
data = {'date': pd.date_range(start='2022-01-01', periods=100, freq='D'), 'value': [i**2 for i in range(100)]}
df = pd.DataFrame(data)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.index, df['value'], test_size=0.2, random_state=42)# 使用随机森林回归模型进行时序预测
model = RandomForestRegressor()
model.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = model.predict(X_test.values.reshape(-1, 1))# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)

实际应用场景

aeon库在实际应用中有着广泛的应用场景,包括但不限于以下几个方面:

1. 股票价格预测

在金融领域,股票价格预测是一个重要的问题。可以利用aeon库中的时序预测功能,结合机器学习模型,对股票价格进行预测和分析。

示例代码:
import aeon
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 加载股票价格数据集
df = pd.read_csv('stock_prices.csv')# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.index, df['price'], test_size=0.2, random_state=42)# 使用随机森林回归模型进行时序预测
model = RandomForestRegressor()
model.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = model.predict(X_test.values.reshape(-1, 1))# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)

2. 交通流量预测

在城市交通管理中,预测交通流量对于优化交通流畅度和减少拥堵具有重要意义。aeon库的时序预测功能可以用于交通流量数据的预测和分析。

示例代码:
import aeon
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 加载交通流量数据集
df = pd.read_csv('traffic_volume.csv')# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.index, df['volume'], test_size=0.2, random_state=42)# 使用随机森林回归模型进行时序预测
model = RandomForestRegressor()
model.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = model.predict(X_test.values.reshape(-1, 1))# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)

总结

通过本文对Python aeon库的介绍和示例代码演示,了解了该库在时间序列数据处理方面的强大功能和应用场景。aeon库不仅提供了丰富的时间序列处理方法,还支持多种常见数据格式和机器学习模型,适用于多个领域的数据分析和预测任务。希望本文能帮助大家更好地理解和应用Python aeon库。

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!


如果想要系统学习Python、Python问题咨询,或者考虑做一些工作以外的副业,都可以扫描二维码添加微信,围观朋友圈一起交流学习。

522fd8eeb5b5659223cde0470d351b02.gif

我们还为大家准备了Python资料和副业项目合集,感兴趣的小伙伴快来找我领取一起交流学习哦!

0e8b96ef6c3cb95421e2adb07d84d644.jpeg

往期推荐

历时一个月整理的 Python 爬虫学习手册全集PDF(免费开放下载)

Python基础学习常见的100个问题.pdf(附答案)

学习 数据结构与算法,这是我见过最友好的教程!(PDF免费下载)

Python办公自动化完全指南(免费PDF)

Python Web 开发常见的100个问题.PDF

肝了一周,整理了Python 从0到1学习路线(附思维导图和PDF下载)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/780157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm install 报错ERESOLVE unable to resolve dependency tree

描述:npm install 报错ERESOLVE unable to resolve dependency tree 解决方案: npm install --legacy-peer-deps

深入MNN:开源深度学习框架的介绍、安装与编译指南

引言 在人工智能的世界里,深度学习框架的选择对于研究和应用的进展至关重要。MNN,作为一个轻量级、高效率的深度学习框架,近年来受到了众多开发者和研究人员的青睐。它由阿里巴巴集团开源,专为移动端设备设计,支持跨平…

gateway 分发时若两个服务的路由地址一样,怎么指定访问想要的服务下的地址

1.思路 在使用Spring Cloud Gateway时,如果两个服务的路由地址相同,可以通过Predicate(断言)和Filter(过滤器)的组合来实现根据请求的不同条件将请求分发到不同的服务下的地址。 使用Predicate进行路由条件…

sync包常用并发安全数据结构

sync.WaitGroup 使用 sync.WaitGroup用于等待一组goroutine完成。Add方法设置计数器,Done方法减少计数器,Wait方法阻塞直到计数器为0。 package mainimport ("fmt""sync""time" )func worker(id int, wg *sync.WaitGroup…

Hive窗口函数笔试题(面试题)

Hive笔试题实战 短视频 题目一:计算各个视频的平均未完播率 有用户-视频互动表tb_user_video_log: id uid video_id start_time end_time if_follow if_like if_retweet comment_id 1 101 2001 2021-10-01 10:00:00 2021-10-01 10:00:30…

使用mysql官网软件包安装mysql

确定你的操作系统,我的是Centos myqsl 所有安装包的地址:https://repo.mysql.com/yum/ 如果你是使用rpm安装你可以到对应的版本里面找到对应的包。 mysql 发行包的地址:http://repo.mysql.com/ 在这里你可以找到对应的发布包安装。 这里使用y…

TCP/IP 网络模型有哪几层?(计算机网络)

应用层 为用户提供应用功能 传输层 负责为应用层提供网络支持 使用TCP和UDP 当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块…

【2】单链表

【2】单链表 1、单链表2、单链表的设计3、接口设计4、SingleLinkedList5、node(int index) 返回索引位置的节点6、clear()7、添加8、删除9、indexOf(E element) 1、单链表 📕动态数组有个明显的缺点 🖊 可能会造成内存空间的大量浪费 📕 能否…

基于pear-admin-flask 的 flask 使用教程

我最近接触到了一个极为出色的Flask后台库——pear-admin-flask,这个库具有很高的二次开发价值。借此机会学习并吸收其中Flask开发的一些高级技巧。 1. flask 自定义命令 pear-admin-flask/applications/common/script/admin.py from flask.cli import AppGroup …

CUDA从入门到放弃(十四):CUDA Thrust库

CUDA从入门到放弃(十四):CUDA Thrust库 Thrust 是一个基于标准模板库(STL)的 C 模板库,专为 CUDA 设计,旨在简化高性能并行应用的开发。它提供了一系列数据并行原语,如扫描、排序和…

vue基础教程(4)——十分钟吃透vue路由router

同学们可以私信我加入学习群! 正文开始 前言一、路由概念二、路由使用三、创建路由对应的组件四、给整个项目一个入口总结 前言 前面的文章运行成功后,页面显示如下: 在这个页面中,点击Home和About都会切换右面的页面内容&#…

《责任链模式(极简c++)》

本文章属于专栏- 概述 - 《设计模式(极简c版)》-CSDN博客 模式说明 方案: 责任链模式将请求的发送者和接收者解耦,构成一个链条,并由多个对象对请求进行处理,直到找到合适的处理者为止。优点: …

iOS UIFont-真香警告之字体管理类

UIFont 系列传送门 第一弹加载本地字体:iOS UIFont-新增第三方字体 第二弹加载线上字体:iOS UIFont-实现三方字体的下载和使用 第三弹搭建字体管理类:iOS UIFont-真香警告之字体管理类 前言 不知道友们是否有过这种经历,项目已经迭代了很多版本,项目中的文件已经上千个了…

uniapp数组合并函数使用几录

let that { listAll: [1, 2, 3] }; let data [4, 5, 6]; let mergedArray that.listAll.concat(data); console.log(mergedArray); // 输出: [1, 2, 3, 4, 5, 6] console.log(that.listAll); // 输出: [1, 2, 3],原始数组没有改变 唯有美景,可以抚…

基于SSM+Jsp+Mysql的医院远程诊断系统

开发语言:Java框架:ssm技术:JSPJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包…

故障诊断 | 基于FTNN网络模型的故障诊断(Pytorch)

效果分析 基本介绍 FTNN是一种基于神经网络的故障诊断模型,它旨在识别和定位系统中的故障。使用已标记的数据集对FTNN模型进行训练。标记的数据集包括系统在正常和故障状态下的数据,以及对应的故障标签。通过算法和优化方法,调整网络参数以最小化预测误差。使用独立的测试数…

linux三剑客之grep

grep命令 基本语法 示例 搜索文件 example.txt 中包含单词 "example" 的所有行: grep -v "example" example.txt 计算文件 example.txt 中包含 "example" 的行数: grep -c "example" example.txt 显示 example.txt 中包含 "e…

SQLite中的隔离(八)

返回:SQLite—系列文章目录 上一篇:SQLite版本3中的文件锁定和并发(七) 下一篇:SQLite—系列文章目录 数据库的“isolation”属性确定何时对 一个操作的数据库对其他并发操作可见。 数据库连接之间的隔离 如果使用两个不…

Flume面试题及参考答案

在大数据领域,Flume是一个不可或缺的工具,它负责可靠地收集、聚合和移动大量日志数据。作为一名大数据架构师,掌握Flume的工作原理和最佳实践对于构建高效的数据处理流水线至关重要。本文将深入探讨一系列Flume面试题,并提供详尽的参考答案,以帮助读者在面试中表现出色,并…

LeetCode-2908. 元素和最小的山形三元组 I【数组,前后缀分解】

LeetCode-2908. 元素和最小的山形三元组 I【数组】 题目描述&#xff1a;解题思路一&#xff1a;暴力解法&#xff0c;三个for循环解题思路二&#xff1a;优化&#xff0c;这里注意到1 < nums[i] < 50&#xff0c;其实如果有山形三元组&#xff0c;那么result是一定小于等…