Hive窗口函数笔试题(面试题)

Hive笔试题实战

短视频

题目一:计算各个视频的平均未完播率

有用户-视频互动表tb_user_video_log:

id

uid

video_id

start_time

end_time

if_follow

if_like

if_retweet

comment_id

1

101

2001

2021-10-01 10:00:00

2021-10-01 10:00:30

0

1

1

NULL

2

102

2001

2021-10-01 10:00:00

2021-10-01 10:00:24

0

0

1

NULL

3

103

2001

2021-10-01 11:00:00

2021-10-01 11:00:34

0

1

0

1732526

4

101

2002

2021-09-01 10:00:00

2021-9-01 10:00:42

1

0

1

NULL

5

102

2002

2021-10-01 11:00:00

2021-10-01 10:00:30

1

0

1

NULL

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

id

video_id

author

tag

duration

release_time

1

2001

901

影视

30

2021-01-01 07:00:00

2

2002

901

美食

60

2021-01-01 07:00:00

3

2003

902

旅游

90

2021-01-01 07:00:00

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:计算2021年里有播放记录的每个视频的完播率(结果保留三位小数),并按完播率降序排序。输出结果如下:

video_id

avg_comp_play_rate

2001

0.667

2002

0.000

注:视频完播率是指完成播放次数占总播放次数的比例。简单起见,结束观看时间与开始播放时间的差≥视频时长时,视为完成播放。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id         int comment '自增ID', 

uid        int comment '用户ID',

video_id   int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time   string COMMENT '结束观看时间',

    if_follow  int comment '是否关注',

    if_like    int comment '是否点赞',

    if_retweet int comment '是否转发',

    comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

    id           int comment '自增ID',

    video_id     int comment '视频ID',

    author       int comment '创作者ID',

    tag          string comment '类别标签',

    duration     int comment '视频时长(秒数)',

    release_time string comment '发布时间'

) comment '短视频信息表'

    row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),

       (2, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),

       (3, 103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),

       (4, 101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),

       (5, 102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);

insert into tb_video_info

values (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

       (2, 2002, 901, '美食', 60, '2021-01-01 7:00:00'),

       (3, 2003, 902, '旅游', 90, '2021-01-01 7:00:00');

题目二:平均播放进度大于60%的视频类别

有用户-视频互动表tb_user_video_log:

id

uid

video_id

start_time

end_time

if_follow

if_like

if_retweet

comment_id

1

101

2001

2021-10-01 10:00:00

2021-10-01 10:00:30

0

1

1

NULL

2

102

2001

2021-10-01 10:00:00

2021-10-01 10:00:21

0

0

1

NULL

3

103

2001

2021-10-01 11:00:50

2021-10-01 11:01:20

0

1

0

1732526

4

102

2002

2021-10-01 11:00:00

2021-10-01 11:00:30

1

0

1

NULL

5

103

2002

2021-10-01 10:59:05

2021-10-01 11:00:05

1

0

1

NULL

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

id

video_id

author

tag

duration

release_time

1

2001

901

影视

30

2021-01-01 07:00:00

2

2002

901

美食

60

2021-01-01 07:00:00

3

2003

902

旅游

90

2021-01-01 07:00:00

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:计算各类视频的平均播放进度,将进度大于60%的类别输出(结果保留两位小数,并按播放进度倒序排序)。示例数据的输出结果如下:

tag

avg_play_progress

影视

90.00%

美食

75.00%

注:播放进度=播放时长÷视频时长*100%,当播放时长大于视频时长时,播放进度均记为100%。

例如:影视类视频2001被用户101、102、103看过,播放进度分别为:30秒(100%)、21秒(70%)、30秒(100%),平均播放进度为(100%+70%+100%)/3=90.00%(保留两位小数)。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

    id         int comment '自增ID',

    uid        int comment '用户ID',

    video_id   int comment '视频ID',

    start_time string COMMENT '开始观看时间',

    end_time   string COMMENT '结束观看时间',

    if_follow  int comment '是否关注',

    if_like    int comment '是否点赞',

    if_retweet int comment '是否转发',

    comment_id int comment '评论ID'

) comment '用户-视频互动表'

    row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

    id           int comment '自增ID',

    video_id     int comment '视频ID',

    author       int comment '创作者ID',

    tag          string comment '类别标签',

    duration     int comment '视频时长(秒数)',

    release_time string comment '发布时间'

) comment '短视频信息表'

    row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),

       (2, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:21', 0, 0, 1, null),

       (3, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:20', 0, 1, 0, 1732526),

       (4, 102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null),

       (5, 103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 1, null);

insert into tb_video_info

values (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

       (2, 2002, 901, '美食', 60, '2021-01-01 7:00:00'),

       (3, 2003, 902, '旅游', 90, '2021-01-01 7:00:00');

题目三:每类视频近一个月的转发量/率

有用户-视频互动表tb_user_video_log:

id

uid

video_id

start_time

end_time

if_follow

if_like

if_retweet

comment_id

1

101

2001

2021-10-01 10:00:00

2021-10-01 10:00:20

0

1

1

NULL

2

102

2001

2021-10-01 10:00:00

2021-10-01 10:00:15

0

0

1

NULL

3

103

2001

2021-10-01 11:00:50

2021-10-01 11:01:15

0

1

0

1732526

4

102

2002

2021-09-10 11:00:00

2021-09-10 11:00:30

1

0

1

NULL

5

103

2002

2021-10-01 10:59:05

2021-10-01 11:00:05

1

0

0

NULL

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

id

video_id

author

tag

duration

release_time

1

2001

901

影视

30

2021-01-01 07:00:00

2

2002

901

美食

60

2021-01-01 07:00:00

3

2003

902

旅游

90

2021-01-01 07:00:00

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:统计在有用户互动的最近一个月(按包含当天在内的近30天算,比如10月31日的近30天为10.2~10.31之间的数据)中,每类视频的转发量和转发率(保留3位小数)。输出结果如下:

tag

retweet_cut

retweet_rate

影视

2

0.667

美食

1

0.500

注:转发率=转发量÷播放量。结果按转发率降序排序。

解释:由表tb_user_video_log的数据可得,数据转储当天为2021年10月1日。近30天内,影视类视频2001共有3次播放记录,被转发2次,转发率为0.667;美食类视频2002共有2次播放记录,1次被转发,转发率为0.500。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

    id         int comment '自增ID',

    uid        int comment '用户ID',

    video_id   int comment '视频ID',

    start_time string COMMENT '开始观看时间',

    end_time   string COMMENT '结束观看时间',

    if_follow  int comment '是否关注',

    if_like    int comment '是否点赞',

    if_retweet int comment '是否转发',

    comment_id int comment '评论ID'

) comment '用户-视频互动表'

    row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

    id           int comment '自增ID',

    video_id     int comment '视频ID',

    author       int comment '创作者ID',

    tag          string comment '类别标签',

    duration     int comment '视频时长(秒数)',

    release_time string comment '发布时间'

) comment '短视频信息表'

    row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 0, 1, 1, null),

       (2, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),

       (3, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 0, 1, 0, 1732526),

       (4, 102, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null),

       (5, 103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 0, null);

insert into tb_video_info

values (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

       (2, 2002, 901, '美食', 60, '2021-01-01 7:00:00'),

       (3, 2003, 902, '旅游', 90, '2021-01-01 7:00:00');

题目四:每个创作者每月的涨粉率及截止当前的总粉丝量

有用户-视频互动表tb_user_video_log:

id

uid

video_id

start_time

end_time

if_follow

if_like

if_retweet

comment_id

1

101

2001

2021-09-01 10:00:00

2021-09-01 10:00:20

0

1

1

NULL

2

105

2002

2021-09-10 11:00:00

2021-09-10 11:00:30

1

0

1

NULL

3

101

2001

2021-10-01 10:00:00

2021-10-01 10:00:20

1

1

1

NULL

4

102

2001

2021-10-01 10:00:00

2021-10-01 10:00:15

0

0

1

NULL

5

103

2001

2021-10-01 11:00:50

2021-10-01 11:01:15

1

1

0

1732526

6

106

2002

2021-10-01 10:59:05

021-10-01 11:00:05

2

0

0

NULL

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

id

video_id

author

tag

duration

release_time

1

2001

901

影视

30

2021-01-01 07:00:00

2

2002

901

美食

60

2021-01-01 07:00:00

3

2003

902

旅游

90

2021-01-01 07:00:00

4

2004

902

美女

90

2020-01-01 08:00:00

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:计算2021年里每个创作者每月的涨粉率及截止当月的总粉丝量。输出结果如下:

author

month

fans_growth_rate

total_fans

901

2021-09

0.500

1

901

2021-10

0.250

2

注:涨粉率=(加粉量 - 掉粉量) / 播放量。结果按创作者ID、总粉丝量升序排序。if_follow-是否关注,为1表示用户观看视频中关注了视频创作者,为0表示此次互动前后关注状态未发生变化,为2表示本次观看过程中取消了关注。

解释:示例数据中表tb_user_video_log里只有视频2001和2002的播放记录,都来自创作者901,播放时间在2021年9月和10月;其中9月里加粉量为1,掉粉量为0,播放量为2,因此涨粉率为0.500(保留3位小数);其中10月里加粉量为2,掉份量为1,播放量为4,因此涨粉率为0.250,截止当前总粉丝数为2。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

    id         int comment '自增ID',

    uid        int comment '用户ID',

    video_id   int comment '视频ID',

    start_time string COMMENT '开始观看时间',

    end_time   string COMMENT '结束观看时间',

    if_follow  int comment '是否关注',

    if_like    int comment '是否点赞',

    if_retweet int comment '是否转发',

    comment_id int comment '评论ID'

) comment '用户-视频互动表'

    row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

    id           int comment '自增ID',

    video_id     int comment '视频ID',

    author       int comment '创作者ID',

    tag          string comment '类别标签',

    duration     int comment '视频时长(秒数)',

    release_time string comment '发布时间'

) comment '短视频信息表'

    row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-09-01 10:00:00', '2021-09-01 10:00:20', 0, 1, 1, null),

       (2, 105, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null),

       (3, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 1, null),

       (4, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),

       (5, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526),

       (6, 106, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 2, 0, 0, null);

insert into tb_video_info

VALUES (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

       (2, 2002, 901, '影视', 60, '2021-01-01 7:00:00'),

       (3, 2003, 902, '旅游', 90, '2020-01-01 7:00:00'),

       (4, 2004, 902, '美女', 90, '2020-01-01 8:00:00');

题目五:国庆期间每类视频点赞量和转发量

有用户-视频互动表tb_user_video_log:

id

uid

video_id

start_time

end_time

if_follow

if_like

if_retweet

comment_id

1

101

2001

2021-09-24 10:00:00

2021-09-24 10:00:20

1

1

0

NULL

2

105

2002

2021-09-25 11:00:00

2021-09-25 11:00:30

0

0

1

NULL

3

102

2002

2021-09-25 11:00:00

2021-09-25 11:00:30

1

1

1

NULL

4

101

2002

2021-09-26 11:00:00

2021-09-26 11:00:30

1

0

1

NULL

5

101

2002

2021-09-27 11:00:00

2021-09-27 11:00:30

1

1

0

NULL

6

102

2002

2021-09-28 11:00:00

2021-09-28 11:00:30

1

0

1

NULL

7

103

2002

2021-09-29 11:00:00

2021-10-02 11:00:30

1

0

1

NULL

8

102

2002

2021-09-30 11:00:00

2021-09-30 11:00:30

1

1

1

NULL

9

101

2001

2021-10-01 10:00:00

2021-10-01 10:00:20

1

1

0

NULL

10

102

2001

2021-10-01 10:00:00

2021-10-01 10:00:15

0

0

1

NULL

11

103

2001

2021-10-01 11:00:50

2021-10-01 11:01:15

1

1

0

1732526

12

106

2002

2021-10-02 10:59:05

2021-10-02 11:00:05

2

0

1

NULL

13

107

2002

2021-10-02 10:59:05

2021-10-02 11:00:05

1

0

1

NULL

14

108

2002

2021-10-02 10:59:05

2021-10-02 11:00:05

1

1

1

NULL

15

109

2002

2021-10-03 10:59:05

2021-10-03 11:00:05

0

1

0

NULL

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

id

video_id

author

tag

duration

release_time

1

2001

901

影视

30

2021-01-01 07:00:00

2

2002

901

美食

60

2021-01-01 07:00:00

3

2003

902

旅游

90

2021-01-01 07:00:00

4

2004

902

美女

90

2020-01-01 08:00:00

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:统计2021年国庆头3天每类视频每天的近一周总点赞量和一周内最大单天转发量,结果按视频类别降序、日期升序排序。假设数据库中数据足够多,至少每个类别下国庆头3天及之前一周的每天都有播放记录。结果如下:

tag

dt

sum_like_cnt_7d

max_retweet_cnt_7d

旅游

2021-10-01

5

2

旅游

2021-10-02

5

3

旅游

2021-10-03

6

3

解释:由表tb_user_video_log里的数据可得只有旅游类视频的播放,2021年9月25到10月3日每天的点赞量和转发量如下:

tag

dt

like_cnt

retweet_cnt

旅游

2021-09-25

1

2

旅游

2021-09-26

0

1

旅游

2021-09-27

1

0

旅游

2021-09-28

0

1

旅游

2021-09-29

0

1

旅游

2021-09-30

1

1

旅游

2021-10-01

2

1

旅游

2021-10-02

1

3

旅游

2021-10-03

1

0

因此国庆头3天(10.01~10.03)里10.01的近7天(9.25~10.01)总点赞量为5次,单天最大转发量为2次(9月25那天最大);同理可得10.02和10.03的两个指标。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

    id         int comment '自增ID',

    uid        int comment '用户ID',

    video_id   int comment '视频ID',

    start_time string COMMENT '开始观看时间',

    end_time   string COMMENT '结束观看时间',

    if_follow  int comment '是否关注',

    if_like    int comment '是否点赞',

    if_retweet int comment '是否转发',

    comment_id int comment '评论ID'

) comment '用户-视频互动表'

    row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

    id           int comment '自增ID',

    video_id     int comment '视频ID',

    author       int comment '创作者ID',

    tag          string comment '类别标签',

    duration     int comment '视频时长(秒数)',

    release_time string comment '发布时间'

) comment '短视频信息表'

    row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:20', 1, 1, 0, null),

       (2, 105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 0, 0, 1, null),

       (3, 102, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 1, 1, null),

       (4, 101, 2002, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 1, null),

       (5, 101, 2002, '2021-09-27 11:00:00', '2021-09-27 11:00:30', 1, 1, 0, null),

       (6, 102, 2002, '2021-09-28 11:00:00', '2021-09-28 11:00:30', 1, 0, 1, null),

       (7, 103, 2002, '2021-09-29 11:00:00', '2021-09-29 11:00:30', 1, 0, 1, null),

       (8, 102, 2002, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 1, null),

       (9, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 0, null),

       (10, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),

       (11, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526),

       (12, 106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 2, 0, 1, null),

       (13, 107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 0, 1, null),

       (14, 108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null),

       (15, 109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:05', 0, 1, 0, null);

insert into tb_video_info

VALUES (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

       (2, 2002, 901, '影视', 60, '2021-01-01 7:00:00'),

       (3, 2003, 902, '旅游', 90, '2020-01-01 7:00:00'),

       (4, 2004, 902, '美女', 90, '2020-01-01 8:00:00');

题目六:近一个月发布的视频中热度最高的top3视频

有用户-视频互动表tb_user_video_log:

id

uid

video_id

start_time

end_time

if_follow

if_like

if_retweet

comment_id

1

101

2001

2021-09-24 10:00:00

2021-09-24 10:00:30

1

1

1

NULL

2

101

2001

2021-10-01 10:00:00

2021-10-01 10:00:31

1

1

0

NULL

3

102

2001

2021-10-01 10:00:00

2021-10-01 10:00:35

0

0

1

NULL

4

103

2001

2021-10-03 11:00:50

2021-10-03 10:00:35

1

1

0

1732526

5

106

2002

2021-10-02 11:00:05

2021-10-02 11:01:04

2

0

1

NULL

6

107

2002

2021-10-02 10:59:05

2021-10-02 11:00:06

1

0

0

NULL

7

108

2002

2021-10-02 10:59:05

2021-10-02 11:00:05

1

1

1

NULL

8

109

2002

2021-10-03 10:59:05

2021-10-03 11:00:01

0

1

0

NULL

9

105

2002

2021-09-25 11:00:00

2021-09-25 11:00:30

1

0

1

NULL

10

101

2003

2021-09-26 11:00:00

2021-09-26 11:00:30

1

0

0

NULL

11

101

2003

2021-09-30 11:00:00

2021-09-30 11:00:30

1

1

0

NULL

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

id

video_id

author

tag

duration

release_time

1

2001

901

影视

30

2021-09-05 07:00:00

2

2002

901

美食

60

2021-09-05 07:00:00

3

2003

902

旅游

90

2021-09-05 07:00:00

4

2004

902

美女

90

2021-09-05 08:00:00

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:找出近一个月发布的视频中热度最高的top3视频。结果如下:

video_id

hot_index

2001

122

2002

56

2003

1

注意:

1)热度=(a*视频完播率+b*点赞数+c*评论数+d*转发数)*新鲜度;

2)新鲜度=最近无播放天数+1,最近无播放天数指的是最后一次播放日期到最近日期之间的天数间隔;

3)当前配置的参数a,b,c,d分别为100、5、3、2;

4)最近播放日期以end_time为准,假设为T,则最近一个月按[T-29, T]闭区间统计;

5)结果中热度保留为整数,并按热度降序排序。

解释:假设最近播放日期为2021-10-03,记作当天日期;近一个月(2021-09-04及之后)发布的视频有2001、2002、2003、2004,不过2004暂时还没有播放记录;视频2001完播率1.0(被播放次数4次,完成播放4次),被点赞3次,评论1次,转发2次,最后一次播放日期为2021-10-03,所以最近无播放天数为0,因此热度为:(100*1.0+5*3+3*1+2*2)/(0+1)=122;同理,视频2003完播率0,被点赞数1,评论和转发均为0,最后一次播放日期为2021-09-30,所以最近无播放天数为3,因此热度为:(100*0+5*1+3*0+2*0)/(3+1)=1(1.2保留为整数)。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

    id         int comment '自增ID',

    uid        int comment '用户ID',

    video_id   int comment '视频ID',

    start_time string COMMENT '开始观看时间',

    end_time   string COMMENT '结束观看时间',

    if_follow  int comment '是否关注',

    if_like    int comment '是否点赞',

    if_retweet int comment '是否转发',

    comment_id int comment '评论ID'

) comment '用户-视频互动表'

    row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

    id           int comment '自增ID',

    video_id     int comment '视频ID',

    author       int comment '创作者ID',

    tag          string comment '类别标签',

    duration     int comment '视频时长(秒数)',

    release_time string comment '发布时间'

) comment '短视频信息表'

    row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:30', 1, 1, 1, null),

       (2, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:31', 1, 1, 0, null),

       (3, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:35', 0, 0, 1, null),

       (4, 103, 2001, '2021-10-03 11:00:50', '2021-10-03 11:01:35', 1, 1, 0, 1732526),

       (5, 106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:04', 2, 0, 1, null),

       (6, 107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:06', 1, 0, 0, null),

       (7, 108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null),

       (8, 109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:01', 0, 1, 0, null),

       (9, 105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 0, 1, null),

       (10, 101, 2003, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 0, null),

       (11, 101, 2003, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 0, null);

insert into tb_video_info

VALUES (1, 2001, 901, '旅游', 30, '2021-09-05 7:00:00'),

       (2, 2002, 901, '旅游', 60, '2021-09-05 7:00:00'),

       (3, 2003, 902, '影视', 90, '2021-09-05 7:00:00'),

       (4, 2004, 902, '影视', 90, '2021-09-05 8:00:00');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/780152.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用mysql官网软件包安装mysql

确定你的操作系统,我的是Centos myqsl 所有安装包的地址:https://repo.mysql.com/yum/ 如果你是使用rpm安装你可以到对应的版本里面找到对应的包。 mysql 发行包的地址:http://repo.mysql.com/ 在这里你可以找到对应的发布包安装。 这里使用y…

TCP/IP 网络模型有哪几层?(计算机网络)

应用层 为用户提供应用功能 传输层 负责为应用层提供网络支持 使用TCP和UDP 当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块…

【2】单链表

【2】单链表 1、单链表2、单链表的设计3、接口设计4、SingleLinkedList5、node(int index) 返回索引位置的节点6、clear()7、添加8、删除9、indexOf(E element) 1、单链表 📕动态数组有个明显的缺点 🖊 可能会造成内存空间的大量浪费 📕 能否…

基于pear-admin-flask 的 flask 使用教程

我最近接触到了一个极为出色的Flask后台库——pear-admin-flask,这个库具有很高的二次开发价值。借此机会学习并吸收其中Flask开发的一些高级技巧。 1. flask 自定义命令 pear-admin-flask/applications/common/script/admin.py from flask.cli import AppGroup …

CUDA从入门到放弃(十四):CUDA Thrust库

CUDA从入门到放弃(十四):CUDA Thrust库 Thrust 是一个基于标准模板库(STL)的 C 模板库,专为 CUDA 设计,旨在简化高性能并行应用的开发。它提供了一系列数据并行原语,如扫描、排序和…

vue基础教程(4)——十分钟吃透vue路由router

同学们可以私信我加入学习群! 正文开始 前言一、路由概念二、路由使用三、创建路由对应的组件四、给整个项目一个入口总结 前言 前面的文章运行成功后,页面显示如下: 在这个页面中,点击Home和About都会切换右面的页面内容&#…

《责任链模式(极简c++)》

本文章属于专栏- 概述 - 《设计模式(极简c版)》-CSDN博客 模式说明 方案: 责任链模式将请求的发送者和接收者解耦,构成一个链条,并由多个对象对请求进行处理,直到找到合适的处理者为止。优点: …

iOS UIFont-真香警告之字体管理类

UIFont 系列传送门 第一弹加载本地字体:iOS UIFont-新增第三方字体 第二弹加载线上字体:iOS UIFont-实现三方字体的下载和使用 第三弹搭建字体管理类:iOS UIFont-真香警告之字体管理类 前言 不知道友们是否有过这种经历,项目已经迭代了很多版本,项目中的文件已经上千个了…

uniapp数组合并函数使用几录

let that { listAll: [1, 2, 3] }; let data [4, 5, 6]; let mergedArray that.listAll.concat(data); console.log(mergedArray); // 输出: [1, 2, 3, 4, 5, 6] console.log(that.listAll); // 输出: [1, 2, 3],原始数组没有改变 唯有美景,可以抚…

基于SSM+Jsp+Mysql的医院远程诊断系统

开发语言:Java框架:ssm技术:JSPJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包…

故障诊断 | 基于FTNN网络模型的故障诊断(Pytorch)

效果分析 基本介绍 FTNN是一种基于神经网络的故障诊断模型,它旨在识别和定位系统中的故障。使用已标记的数据集对FTNN模型进行训练。标记的数据集包括系统在正常和故障状态下的数据,以及对应的故障标签。通过算法和优化方法,调整网络参数以最小化预测误差。使用独立的测试数…

linux三剑客之grep

grep命令 基本语法 示例 搜索文件 example.txt 中包含单词 "example" 的所有行: grep -v "example" example.txt 计算文件 example.txt 中包含 "example" 的行数: grep -c "example" example.txt 显示 example.txt 中包含 "e…

SQLite中的隔离(八)

返回:SQLite—系列文章目录 上一篇:SQLite版本3中的文件锁定和并发(七) 下一篇:SQLite—系列文章目录 数据库的“isolation”属性确定何时对 一个操作的数据库对其他并发操作可见。 数据库连接之间的隔离 如果使用两个不…

Flume面试题及参考答案

在大数据领域,Flume是一个不可或缺的工具,它负责可靠地收集、聚合和移动大量日志数据。作为一名大数据架构师,掌握Flume的工作原理和最佳实践对于构建高效的数据处理流水线至关重要。本文将深入探讨一系列Flume面试题,并提供详尽的参考答案,以帮助读者在面试中表现出色,并…

LeetCode-2908. 元素和最小的山形三元组 I【数组,前后缀分解】

LeetCode-2908. 元素和最小的山形三元组 I【数组】 题目描述&#xff1a;解题思路一&#xff1a;暴力解法&#xff0c;三个for循环解题思路二&#xff1a;优化&#xff0c;这里注意到1 < nums[i] < 50&#xff0c;其实如果有山形三元组&#xff0c;那么result是一定小于等…

汽车电子行业知识:汽车电子领域包含哪些技术

汽车电子行业涉及到许多方面的知识&#xff0c;包括但不限于&#xff1a; 汽车电子控制单元&#xff08;ECU&#xff09;&#xff1a;负责监控和控制车辆的各种系统&#xff0c;如发动机控制单元、制动系统控制单元、空调系统控制单元等。汽车传感器技术&#xff1a;包括温度传…

Luigi任务调度框架学习2:运行每一个Task,避免因判定完成导致跳过执行Task主程序

在上一篇Luigi的线性调度文章中&#xff08;Luigi任务调度框架学习1&#xff1a;线性调用流程&#xff09;&#xff0c;我们知道Task运行的时候&#xff1a; 每个任务是否完成有两次判定&#xff0c;即&#xff1a;进行判定(未完成) 》运行def run(self)函数 》进行判定(完成) …

国产暴雨AI服务器X3418开启多元自主可控新篇章

在当前数字化转型的大潮中&#xff0c;算力作为新质生产力的重要动力引擎&#xff0c;对推动经济社会发展起着关键作用。尤其在人工智能领域&#xff0c;随着高性能、安全可控的AI算力需求持续攀升&#xff0c;国产化服务器的研发与应用显得尤为迫切。 作为国内专业的算力基础…

mysql5.7 源码分析--初始化

集中在sql\mysqld.cc文件的mysqld_main函数中&#xff08;&#xff09;&#xff1a; 主程序入口 在sql\main.cc文件中&#xff1a; int main(int argc, char **argv) {return mysqld_main(arg, argv); } 一、mysql为了跨平台&#xff0c;对win32系统做了单独的初始化&#x…

【ENSP】交换机和路由器之间实现静态路由

1.概念 三层交换机只能在Vlanif逻辑口配置iP地址 路由器的每一个端口都是另外一个网段 2.实现方法 交换机允许对应vlan通行&#xff0c;配置vlanif的ip地址&#xff0c;做静态路由 路由器&#xff0c;进接口配置对应的ip&#xff0c;路由器和交换机相连的口&#xff0c;进入他的…