前言:
前面我们一同学习了二叉搜索树,以及特殊版本的平衡二叉搜索树,这些容器让我们查找数据的效率提高到了O(log^2 N)。虽然效率提高了很多,但是有没有一种理想的方法使得我们能提高到O(1)呢?其实在C语言数据结构中,我们接触过哈希表,他可以使效率提高到O(1)。
哈希表作为STL中我们所必须学习和了解的容器,是一种一一映射的存储方式,其次它在日常生活中的应用范围也是很广的,例如位图,海量数据筛选中用到的布隆过滤器等等……
下面我们就来先学习一下STL中的应用哈希表的两个容器,再了解一下底层结构 (两个关联式容器unordered_map和unordered_set,unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构),最后再来模拟实现一下。
目录
(一)STL中底层应用哈希的两个容器
1、unordered_set
2、unordered_map
(二)常见的查找性能对比
(三)哈希表的概念及模拟实现
1、哈希的概念
2、哈希函数
3、哈希冲突
4、闭散列——开放定址法
5、开散列——链地址法(开链法),哈希桶
(四)详细代码
(一)STL中底层应用哈希的两个容器
在STL中对应的容器分别是unordered_map和unordered_set这两个关联式容器。、
我们会用map和set,其实就会用unordered_map和unordered_set这两个容器,但是这两类容器是有区别的!
我们一一分析:
1、unordered_set
文档链接->unordered_set文档
我们使用一下unordered_set的接口函数:
void test_unordered_set1()
{unordered_set<int> s1;s1.insert(1);s1.insert(2);s1.insert(9);s1.insert(2);s1.insert(3);s1.insert(3);s1.insert(4);s1.insert(5);unordered_set<int>::iterator it = s1.begin();while (it != s1.end()){cout << *it << " ";++it;}cout << endl;for (auto e : s1){cout << e << " ";}
}
结果是实现了存储+去重,但是是无序的。
由上图和查阅资料得知:
- map和set: 去重 + 排序
- unordered_map和unordered_set: 只有去重
这里主要原因是底层实现不同,map和set底层是红黑树,unordered_set和unordered_map底层是红黑树。
其余函数接口和之前所学的容器使用起来大致相同,不再一一赘述。
unordered_map和unordered_set都是单向迭代器:
值得注意的是unordered_map和unordered_set的迭代器都是单向迭代器,而我们之前学的map和set则是双向迭代器(所以迭代器可以++也可以--)。
unordered_set和set的性能对比:
int main()
{const size_t N = 100000;unordered_set<int> us;set<int> s;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand());//v.push_back(rand()+i);//v.push_back(i);}size_t begin1 = clock();for (auto e : v){s.insert(e);}size_t end1 = clock();cout << "set insert:" << end1 - begin1 << endl;size_t begin2 = clock();for (auto e : v){us.insert(e);}size_t end2 = clock();cout << "unordered_set insert:" << end2 - begin2 << endl;size_t begin3 = clock();for (auto e : v){s.find(e);}size_t end3 = clock();cout << "set find:" << end3 - begin3 << endl;size_t begin4 = clock();for (auto e : v){us.find(e);}size_t end4 = clock();cout << "unordered_set find:" << end4 - begin4 << endl << endl;size_t begin5 = clock();for (auto e : v){s.erase(e);}size_t end5 = clock();cout << "set erase:" << end5 - begin5 << endl;size_t begin6 = clock();for (auto e : v){us.erase(e);}size_t end6 = clock();cout << "unordered_set erase:" << end6 - begin6 << endl << endl;return 0;
}
数据随机但有重复: 数据随机但重复少
数据连续无重复:
总结:
总的来说unordered_map和unordered_set要比map和set的性能要好的,但是也并不是一定的,当数据量很大的时候,扩容重新哈希是有消耗的。
2、unordered_map
文档链接->unordered_map文档
我们使用unordered1_map的接口函数:
void test_unordered_map()
{string arr[] = { "梨","梨","苹果","梨","西瓜","西瓜" };unordered_map<string, int> m;for (auto& e : arr){m[e]++;}for (auto& kv : m){cout << kv.first << ":" << kv.second << endl;}
}
int main()
{test_unordered_map();return 0;
}
总体来说,unordered_map和map的用法差不多,但是他们的效率有所不同。
(二)常见的查找性能对比
- 暴力查找: 时间复杂度〇(N)
- 二分查找: 时间复杂度〇(logN) ,缺点 — 有序、数组结构
- 搜索二叉树: 时间复杂度〇(N),缺点 — 极端场景退化成单支
- 平衡二叉搜索树: 时间复杂度〇(logN)
- AVLTree: 左右子树高度差不超过1
- 红黑树:最长路径不超过最短路径的2倍
- 哈希
- B树系列: 多叉平衡搜索树 — 数据库原理
- 跳表
ps:
红黑树高度略高一些,但是跟AVL树是同一数量级,对于现代计算机没有差别但是红黑树相对而言近似平衡,旋转少。
(三)哈希表的概念及模拟实现
1、哈希的概念
我们已学过的查找 :
理想的查找方法:
- 该中存储结构可以实现:
-
- 插入元素时:
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
- 插入元素时:
-
- 查找元素时:
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
- 查找元素时:
2、哈希函数
我们如何一一将键值转换为对应的关键码值,并映射到对应序号的存储位置呢?
直接建立映射关系问题:
- 1、数据范围分布很广、不集中(可能存在空间浪费严重的问题)
- 2、key的数据不是整数,是字符串怎么办?是自定义类型对象怎么办?
此时我们就需要一个函数对特殊非整数类型的数据进行处理,使其返回一个特定的整数,这个函数我们叫做 —— 哈希函数。
常见的哈希函数:
1、直接定址法(常用)
- 取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
- 优点:简单、均匀
- 缺点:需要事先知道关键字的分布情况
- 使用场景:适合查找比较小且连续的情况
2、除留余数法(常用)
3、其余常见但不常用的还有 平方取中法、折叠法、随机数法、数学分析法等。
字符串也有自己类型的哈希函数----->参考文献(了解即可)
3、哈希冲突
不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
按照上述哈希函数计算出键值对应的关键码值,但是算出来的这些码值当中,有很大的可能会出现关键码值相同的情况,这种情况就叫作:哈希冲突。
- 哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突。
- 解决哈希冲突两种常见的方法是:闭散列和开散列
4、闭散列——开放定址法
线性探测:
从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入:
- 通过哈希函数获取待插入元素在哈希表中的位置
- 线性探测找到空位置将值插入
查找:
- 挨个遍历哈希表,直到找到空为止
删除:
- 过关键码值再用线性探测找到该值直接删除
- 注意:
- 删除要是直接删除的话有可能会影响查找的准确性
- 如图删除了4,要去找44就会找不到。
那怎么办呢?
- 所以我们给每个键值提供一个状态,采取伪删除的方法
即通过对每一个数据加上一个标识状态即可:
线性探测的缺点:
- 一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。
所以我们引入了二次探测:跳跃着找空位置,是相对上面方法的优化,使得数据可能不那么拥堵。
所以经过上面的介绍,我们想自己实现一个闭散列需要注意以下的几点:
- 哈希函数的选择
- 哈希冲突的应对
- 如何应对“堆积”导致效率低下的情况
- 如何扩容表
第一点和第二点我们已经在上文介绍过了,这里我们应用的就是开放定址法和线性探测。
- 第三点:如何应对“堆积”导致效率低下的情况?
查询资料:
首先根据上文我们知道闭散列哈希表并不能太满:
- 太满就会导致线性探测时,找不到位置
- 更不能放满,那样探测就会陷入死循环
- 所以要控制一下存储的数据
- 我们引入了一个变量
n
来记录存储数据的个数
散列表的载荷因子定义为: a = 填入表中的元素个数 / 散列表的长度
所以我们要控制一下负载因子:
- 第四点:负载因子超了如何扩容?
有人会说直接resize扩容就行了啊。但是,你没注意到一个问题:
我在刚刚那个表中又插入了13,这时按理说应该扩容了防止效率变低。
假如我扩容到20格,我想找13的时候根据哈希函数,13不应该在编号是13的格子中吗?但是我是存储在3中啊,这就矛盾了...
所以扩容时我们不能直接将原来的数据拷贝过去:
- 因为哈希是映射的关系,关键码值是通过数据和表的大小计算出来的
- 如果直接拷贝的话全都乱套了
- 这时我们需要重新映射
如图所示,也不是特别麻烦
直接建立一个新表,然后遍历旧表一次映射到新表中
不过扩容时会有不少的消耗
补充:
- 映射的时候取模
- 应该是对表的size()取模,而不是capacity()
- 因为对capacity取模的话,可能取到超出size的位置
- operator[]会对超出size的检查(不过有的也不检查,根据不同版本的库里定)
5、开散列——链地址法(开链法),哈希桶
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
很显然,哈希桶中每个元素是个地址,所以哈希桶的底层原理就是一个指针数组,每个结点再挂着一个单链表,这样冲突就很容易解决了。
还是老问题,
- 如何应对“堆积”导致效率低下的情况
- 如何扩容
- 如何应对“堆积”导致效率低下的情况?
这里我们还是选择适时扩容,那什么情况扩容呢?
- 如何扩容?
很显然我们更倾向于方案二:
方案一写法更简单,但是不断递归开销更大。
注:哈希桶结点插入,我们一般采用头插的方法,因为对于每一个链表,如果尾插,需要先找到尾,增加了时间消耗,头插的话消耗更低。
因为开散列是一个指针数组,涉及到空间的开辟,所以析构函数我们要自己完善:
~HashTable(){for (auto& cur : _tables){while (cur){Node* next = cur->_next;delete cur;cur = next;}cur = nullptr;}}
(四)详细代码
namespace OpenAddress
{enum State{EMPTY,EXIST,DELETE};template<class K, class V>struct HashData{pair<K, V> _kv;State _state = EMPTY;};template<class K, class V>class HashTable{public:HashData<K, V>* Find(const K& key){if (_tables.size() == 0){return nullptr;}size_t hashi = key % _tables.size();//线性探测size_t i = 1;size_t index = hashi;while (_tables[index]._state != EMPTY){if (_tables[index]._state == EXIST&& _tables[index]._kv.first == key){return &_tables[index];}index = hashi + i;index %= _tables.size();++i;if (index == hashi){break;}}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;--_n;return true;}else{return false;}}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_tables.size() == 0 || _n * 10 / _tables.size() >= 7){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;HashTable<K, V> newht;newht._tables.resize(newsize);for (auto& data : _tables){if (data._state == EXIST){newht.Insert(data._kv);}}_tables.swap(newht._tables);}size_t hashi = kv.first % _tables.size();//线性探测size_t i = 1;size_t index = hashi;while (_tables[index]._state == EXIST){index = hashi + i;index %= _tables.size();++i;}_tables[index]._kv = kv;_tables[index]._state = EXIST;_n++;return true;}private:vector<HashData<K, V>> _tables;size_t _n = 0;//存储的数据个数};void TestHashTable2(){HashTable<int, int> ht;int arr[] = { 1,2,2,3,3,3,4,4,4,4,5,9,2,3 };for (auto& e : arr){ht.Insert(make_pair(e, e));}}void TestHashTable1(){int a[] = { 3, 33, 2, 13, 5, 12, 1002 };HashTable<int, int> ht;for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(15, 15));if (ht.Find(13)){cout << "13在" << endl;}else{cout << "13不在" << endl;}ht.Erase(13);if (ht.Find(13)){cout << "13在" << endl;}else{cout << "13不在" << endl;}}
}namespace HashBacket
{template<class K,class V>struct HashNode{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_next(nullptr), _kv(kv){}};template<class K,class V>class HashTable{typedef HashNode<K, V> Node;public:~HashTable(){for (auto& cur : _tables){while (cur){Node* next = cur->_next;delete cur;cur = next;}cur = nullptr;}}Node* Find(const K& key){if (_tables.size() == 0){return nullptr;}size_t hashi = key % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){size_t hashi = key % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if(prev==nullptr){ _tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}else{prev = cur;cur = cur->_next;}}return false;}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_n == _tables.size()){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;vector<Node*> newtables(newsize, nullptr);for (auto& cur : _tables){while (cur){Node* next = cur->_next;size_t hashi = cur->_kv.first % newtables.size();//头插到新表cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}}_tables.swap(newtables);}size_t hashi = kv.first % _tables.size();// 头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}private:vector<Node*> _tables;size_t _n = 0;};void TestHashTable1(){int a[] = { 3, 33, 2, 13, 5, 12, 1002 };HashTable<int, int> ht;for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(15, 15));ht.Insert(make_pair(25, 25));ht.Insert(make_pair(35, 35));ht.Insert(make_pair(45, 45));}void TestHashTable2(){int a[] = { 3, 33, 2, 13, 5, 12, 1002 };HashTable<int, int> ht;for (auto e : a){ht.Insert(make_pair(e, e));}ht.Erase(12);ht.Erase(3);ht.Erase(33);}
}
感谢你的阅读!