查看:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV4.9.0在Android 开发简介
下一篇:在 MacOS 中安装
本指南旨在帮助您在基于 Android 相机预览的 CV 应用程序中使用 OpenCL ™。教程是为 Android Studio 2022.2.1 编写的。它已使用 Ubuntu 22.04 进行了测试。
本教程假定您已安装并配置了以下内容:
- Android Studio (2022.2.1.+)
- JDK 17
- Android SDK
- Android NDK (25.2.9519653+)
- 从 github 或发布版下载 OpenCV 源代码,并按照 wiki 上的指令构建。
它还假定您熟悉 Android Java 和 JNI 编程基础知识。如果您需要上述任何方面的帮助,可以参考我们的 Android 开发简介指南。
本教程还假设您有一个启用了 OpenCL 的 Android 操作设备。
相关源代码位于 opencv/samples/android/tutorial-4-opencl 目录下的 OpenCV 示例中。
如何使用 OpenCL 构建自定义 OpenCV Android SDK
- 组装和配置 Android OpenCL SDK。示例的 JNI 部分依赖于标准的 Khornos OpenCL 标头,以及 OpenCL 和 libOpenCL.so 的C++包装器。标准的 OpenCL 标头可以从 OpenCV 存储库中的第三方目录或您的 Linux 分发包中复制。C++ 包装器可在 Github 上的官方 Khronos 存储库中找到。按以下方式将头文件复制到教学目录:
cd your_path/ && mkdir ANDROID_OPENCL_SDK && mkdir ANDROID_OPENCL_SDK/include && cd ANDROID_OPENCL_SDK/include cp -r path_to_opencv/opencv/3rdparty/include/opencl/1.2/CL . && cd CL wget https://github.com/KhronosGroup/OpenCL-CLHPP/raw/main/include/CL/opencl.hpp wget https://github.com/KhronosGroup/OpenCL-CLHPP/raw/main/include/CL/cl2.hpp
cd your_path/ANDROID_OPENCL_SDK && mkdir lib && cd lib adb pull /system/vendor/lib64/libOpenCL.so
-Wl,--allow-shlib-undefined
标志允许忽略在构建过程中未使用的第三方符号。以下 CMake 行允许将 JNI 部件链接到标准 OpenCL,但不能将 loadLibrary 包含在应用程序包中。系统 OpenCL API 用于运行时。
target_link_libraries(${target} -lOpenCL)
使用 OpenCL 构建自定义 OpenCV Android SDK。默认情况下,OpenCL 支持 (T-API) 在 Android 操作系统的 OpenCV 构建中处于禁用状态。但可以在启用 OpenCL/T-API 的情况下在本地重建适用于 Android 的 OpenCV:CMake 的 use 选项。您还需要为 CMake 指定 Android OpenCL SDK: use 选项的路径。如果您正在使用 OpenCV 构建 OpenCV,请按照 wiki 上的说明进行操作。在 中设置这些 CMake 参数,例如:-DWITH_OPENCL=ON
-DANDROID_OPENCL_SDK=path_to_your_Android_OpenCL_SDK
build_sdk.py
.config.py
ndk-18-api-level-21.config.py
ABI("3", "arm64-v8a", None, 21, cmake_vars=dict('WITH_OPENCL': 'ON', 'ANDROID_OPENCL_SDK': 'path_to_your_Android_OpenCL_SDK'))
如果您使用 cmake/ninja 构建 OpenCV,请使用以下 bash 脚本(设置您的NDK_VERSION和路径,而不是路径示例):
cd path_to_opencv && mkdir build && cd build
export NDK_VERSION=25.2.9519653
export ANDROID_SDK=/home/user/Android/Sdk/
export ANDROID_OPENCL_SDK=/path_to_ANDROID_OPENCL_SDK/
export ANDROID_HOME=$ANDROID_SDK
export ANDROID_NDK_HOME=$ANDROID_SDK/ndk/$NDK_VERSION/
cmake -GNinja -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK_HOME/build/cmake/android.toolchain.cmake -DANDROID_STL=c++_shared -DANDROID_NATIVE_API_LEVEL=24
-DANDROID_SDK=$ANDROID_SDK -DANDROID_NDK=$ANDROID_NDK_HOME -DBUILD_JAVA=ON -DANDROID_HOME=$ANDROID_SDK -DBUILD_ANDROID_EXAMPLES=ON
-DINSTALL_ANDROID_EXAMPLES=ON -DANDROID_ABI=arm64-v8a -DWITH_OPENCL=ON -DANDROID_OPENCL_SDK=$ANDROID_OPENCL_SDK ..
前言
现在,通过 OpenCL 使用 GPGPU 来增强应用程序性能是一种相当现代的趋势。一些CV算法(例如图像过滤)在GPU上的运行速度比在CPU上快得多。最近,它在 Android 操作系统上已成为可能。
对于 Android 操作的设备,最流行的 CV 应用场景是在预览模式下启动相机,将一些 CV 算法应用于每个帧,并显示由该 CV 算法修改的预览帧。
让我们考虑一下如何在这种情况下使用 OpenCL。具体来说,让我们尝试两种方式:直接调用 OpenCL API 和最近引入的 OpenCV T-API(又名透明 API)——一些 OpenCV 算法的隐式 OpenCL 加速。
应用程序结构
启动 Android API 级别 11 (Android 3.0) 相机 API 允许使用 OpenGL 纹理作为预览帧的目标。Android API 级别 21 带来了一个新的 Camera2 API,它提供了对相机设置和使用模式的更多控制,它允许预览帧的多个目标,特别是 OpenGL 纹理。
在 OpenGL 纹理中拥有预览帧对于使用 OpenCL 来说很划算,因为有一个 OpenGL-OpenCL 互操作性 API (cl_khr_gl_sharing),允许与 OpenCL 函数共享 OpenGL 纹理数据而无需复制(当然有一些限制)。
让我们为我们的应用程序创建一个基础,该基础仅将 Android 相机配置为将预览帧发送到 OpenGL 纹理,并在显示器上显示这些帧,而无需进行任何处理。
用于此目的的最小类Activity
如下所示:Activity
public class Tutorial4Activity extends Activity {
private MyGLSurfaceView mView;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON,
WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
mView = new MyGLSurfaceView(this);
setContentView(mView);
}
@Override
protected void onPause() {
mView.onPause();
super.onPause();
}
@Override
protected void onResume() {
super.onResume();
mView.onResume();
}
}
和最小的类View分别是
public class MyGLSurfaceView extends CameraGLSurfaceView implements CameraGLSurfaceView.CameraTextureListener {
static final String LOGTAG = "MyGLSurfaceView";
protected int procMode = NativePart.PROCESSING_MODE_NO_PROCESSING;
static final String[] procModeName = new String[] {"No Processing", "CPU", "OpenCL Direct", "OpenCL via OpenCV"};
protected int frameCounter;
protected long lastNanoTime;
TextView mFpsText = null;
public MyGLSurfaceView(Context context, AttributeSet attrs) {
super(context, attrs);
}
@Override
public boolean onTouchEvent(MotionEvent e) {
if(e.getAction() == MotionEvent.ACTION_DOWN)
((Activity)getContext()).openOptionsMenu();
return true;
}
@Override
public void surfaceCreated(SurfaceHolder holder) {
super.surfaceCreated(holder);
//NativePart.initCL();
}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
//NativePart.closeCL();
super.surfaceDestroyed(holder);
}
public void setProcessingMode(int newMode) {
if(newMode>=0 && newMode<procModeName.length)
procMode = newMode;
else
Log.e(LOGTAG, "Ignoring invalid processing mode: " + newMode);
((Activity) getContext()).runOnUiThread(new Runnable() {
public void run() {
Toast.makeText(getContext(), "Selected mode: " + procModeName[procMode], Toast.LENGTH_LONG).show();
}
});
}
@Override
public void onCameraViewStarted(int width, int height) {
((Activity) getContext()).runOnUiThread(new Runnable() {
public void run() {
Toast.makeText(getContext(), "onCameraViewStarted", Toast.LENGTH_SHORT).show();
}
});
if (NativePart.builtWithOpenCL())
NativePart.initCL();
frameCounter = 0;
lastNanoTime = System.nanoTime();
}
@Override
public void onCameraViewStopped() {
((Activity) getContext()).runOnUiThread(new Runnable() {
public void run() {
Toast.makeText(getContext(), "onCameraViewStopped", Toast.LENGTH_SHORT).show();
}
});
}
@Override
public boolean onCameraTexture(int texIn, int texOut, int width, int height) {
// FPS
frameCounter++;
if(frameCounter >= 30)
{
final int fps = (int) (frameCounter * 1e9 / (System.nanoTime() - lastNanoTime));
Log.i(LOGTAG, "drawFrame() FPS: "+fps);
if(mFpsText != null) {
Runnable fpsUpdater = new Runnable() {
public void run() {
mFpsText.setText("FPS: " + fps);
}
};
new Handler(Looper.getMainLooper()).post(fpsUpdater);
} else {
Log.d(LOGTAG, "mFpsText == null");
mFpsText = (TextView)((Activity) getContext()).findViewById(R.id.fps_text_view);
}
frameCounter = 0;
lastNanoTime = System.nanoTime();
}
if(procMode == NativePart.PROCESSING_MODE_NO_PROCESSING)
return false;
NativePart.processFrame(texIn, texOut, width, height, procMode);
return true;
}
}
注意
我们使用两个渲染器类:一个用于旧版 Camera API,另一个用于现代 Camera2。
一个最小的类Renderer
可以在 Java 中实现(OpenGL ES 2.0 在 Java 中可用),但由于我们将使用 OpenCL 修改预览纹理,因此让我们将 OpenGL 的东西移动到 JNI。下面是 JNI 内容的简单 Java 包装器:
public class NativePart {
static
{
System.loadLibrary("opencv_java4");
System.loadLibrary("JNIpart");
}
public static final int PROCESSING_MODE_NO_PROCESSING = 0;
public static final int PROCESSING_MODE_CPU = 1;
public static final int PROCESSING_MODE_OCL_DIRECT = 2;
public static final int PROCESSING_MODE_OCL_OCV = 3;
public static native boolean builtWithOpenCL();
public static native int initCL();
public static native void closeCL();
public static native void processFrame(int tex1, int tex2, int w, int h, int mode);
}
由于 Camera
和Camera2
API 在相机设置和控制方面存在很大差异,因此让我们为两个相应的渲染器创建一个基类:
public abstract class MyGLRendererBase implements GLSurfaceView.Renderer, SurfaceTexture.OnFrameAvailableListener {
protected final String LOGTAG = "MyGLRendererBase";
protected SurfaceTexture mSTex;
protected MyGLSurfaceView mView;
protected boolean mGLInit = false;
protected boolean mTexUpdate = false;
MyGLRendererBase(MyGLSurfaceView view) {
mView = view;
}
protected abstract void openCamera();
protected abstract void closeCamera();
protected abstract void setCameraPreviewSize(int width, int height);
public void onResume() {
Log.i(LOGTAG, "onResume");
}
public void onPause() {
Log.i(LOGTAG, "onPause");
mGLInit = false;
mTexUpdate = false;
closeCamera();
if(mSTex != null) {
mSTex.release();
mSTex = null;
NativeGLRenderer.closeGL();
}
}
@Override
public synchronized void onFrameAvailable(SurfaceTexture surfaceTexture) {
//Log.i(LOGTAG, "onFrameAvailable");
mTexUpdate = true;
mView.requestRender();
}
@Override
public void onDrawFrame(GL10 gl) {
//Log.i(LOGTAG, "onDrawFrame");
if (!mGLInit)
return;
synchronized (this) {
if (mTexUpdate) {
mSTex.updateTexImage();
mTexUpdate = false;
}
}
NativeGLRenderer.drawFrame();
}
@Override
public void onSurfaceChanged(GL10 gl, int surfaceWidth, int surfaceHeight) {
Log.i(LOGTAG, "onSurfaceChanged("+surfaceWidth+"x"+surfaceHeight+")");
NativeGLRenderer.changeSize(surfaceWidth, surfaceHeight);
setCameraPreviewSize(surfaceWidth, surfaceHeight);
}
@Override
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
Log.i(LOGTAG, "onSurfaceCreated");
String strGLVersion = GLES20.glGetString(GLES20.GL_VERSION);
if (strGLVersion != null)
Log.i(LOGTAG, "OpenGL ES version: " + strGLVersion);
int hTex = NativeGLRenderer.initGL();
mSTex = new SurfaceTexture(hTex);
mSTex.setOnFrameAvailableListener(this);
openCamera();
mGLInit = true;
}
}
如您所见, Camera
和 Camera2
APIs的继承者应实现以下抽象方法:
protected abstract void openCamera();
protected abstract void closeCamera();
protected abstract void setCameraPreviewSize(int width, int height);
让我们把它们实现的细节留给本教程之外,请参考源代码查看它们。
预览帧修改
OpenGL ES 2.0 初始化的细节也相当简单明了,这里要引用的嘈杂,但这里重要的一点是,作为相机预览目标的 OpeGL 纹理应该是类型(不是),在内部它以 YUV 格式保存图片数据。这使得无法通过 CL-GL 互操作 () 共享它并通过 C/C++ 代码访问其像素数据。为了克服这个限制,我们必须使用 FrameBuffer 对象(又名 FBO)执行从这个纹理到另一个常规纹理的 OpenGL 渲染
OpenGL ES 2.0 初始化的细节也相当简单明了,这里要引用的嘈杂,但这里重要的一点是,作为相机预览目标的 OpeGL 纹理应该是类型(GL_TEXTURE_EXTERNAL_OES不是GL_TEXTURE_2D),在内部它以 YUV 格式保存图片数据。这使得无法通过 CL-GL cl_khr_gl_sharing互操作 () 共享它并通过 C/C++ 代码访问其像素数据。为了克服这个限制,我们必须使用 FrameBuffer 对象(又名 FBO)执行从这个纹理GL_TEXTURE_2D到另一个常规纹理的 OpenGL 渲染。
C/C++ code
之后,我们可以从 C/C++ 读取( glReadPixels()
复制)像素数据,并通过修改后将它们写回纹理 glTexSubImage2D()
。
直接 OpenCL 调用
此外,该纹理可以在不复制的情况下与 OpenCL 共享,但我们必须以特殊方式创建 OpenCL context如下:
int initCL()
{
dumpCLinfo();
LOGE("initCL: start initCL");
EGLDisplay mEglDisplay = eglGetCurrentDisplay();
if (mEglDisplay == EGL_NO_DISPLAY)
LOGE("initCL: eglGetCurrentDisplay() returned 'EGL_NO_DISPLAY', error = %x", eglGetError());
EGLContext mEglContext = eglGetCurrentContext();
if (mEglContext == EGL_NO_CONTEXT)
LOGE("initCL: eglGetCurrentContext() returned 'EGL_NO_CONTEXT', error = %x", eglGetError());
cl_context_properties props[] =
{ CL_GL_CONTEXT_KHR, (cl_context_properties) mEglContext,
CL_EGL_DISPLAY_KHR, (cl_context_properties) mEglDisplay,
CL_CONTEXT_PLATFORM, 0,
0 };
try
{
haveOpenCL = false;
cl::Platform p = cl::Platform::getDefault();
std::string ext = p.getInfo<CL_PLATFORM_EXTENSIONS>();
if(ext.find("cl_khr_gl_sharing") == std::string::npos)
LOGE("Warning: CL-GL sharing isn't supported by PLATFORM");
props[5] = (cl_context_properties) p();
theContext = cl::Context(CL_DEVICE_TYPE_GPU, props);
std::vector<cl::Device> devs = theContext.getInfo<CL_CONTEXT_DEVICES>();
LOGD("Context returned %d devices, taking the 1st one", devs.size());
ext = devs[0].getInfo<CL_DEVICE_EXTENSIONS>();
if(ext.find("cl_khr_gl_sharing") == std::string::npos)
LOGE("Warning: CL-GL sharing isn't supported by DEVICE");
theQueue = cl::CommandQueue(theContext, devs[0]);
cl::Program::Sources src(1, std::make_pair(oclProgI2I, sizeof(oclProgI2I)));
theProgI2I = cl::Program(theContext, src);
theProgI2I.build(devs);
cv::ocl::attachContext(p.getInfo<CL_PLATFORM_NAME>(), p(), theContext(), devs[0]());
if( cv::ocl::useOpenCL() )
LOGD("OpenCV+OpenCL works OK!");
else
LOGE("Can't init OpenCV with OpenCL TAPI");
haveOpenCL = true;
}
catch(const cl::Error& e){
LOGE("cl::Error: %s (%d)", e.what(), e.err());
return 1;
}
catch(const std::exception& e)
{
LOGE("std::exception: %s", e.what());
return 2;
}
catch(...)
{
LOGE( "OpenCL info: unknown error while initializing OpenCL stuff" );
return 3;
}
LOGD("initCL completed");
if (haveOpenCL)
return 0;
else
return 4;
}
然后,纹理可以被对象包装 cl::ImageGL
并通过 OpenCL 调用进行处理
cl::ImageGL imgIn (theContext, CL_MEM_READ_ONLY, GL_TEXTURE_2D, 0, texIn);
cl::ImageGL imgOut(theContext, CL_MEM_WRITE_ONLY, GL_TEXTURE_2D, 0, texOut);
std::vector < cl::Memory > images;
images.push_back(imgIn);
images.push_back(imgOut);
int64_t t = getTimeMs();
theQueue.enqueueAcquireGLObjects(&images);
theQueue.finish();
LOGD("enqueueAcquireGLObjects() costs %d ms", getTimeInterval(t));
t = getTimeMs();
cl::Kernel Laplacian(theProgI2I, "Laplacian"); //TODO: may be done once
Laplacian.setArg(0, imgIn);
Laplacian.setArg(1, imgOut);
theQueue.finish();
LOGD("Kernel() costs %d ms", getTimeInterval(t));
t = getTimeMs();
theQueue.enqueueNDRangeKernel(Laplacian, cl::NullRange, cl::NDRange(w, h), cl::NullRange);
theQueue.finish();
LOGD("enqueueNDRangeKernel() costs %d ms", getTimeInterval(t));
t = getTimeMs();
theQueue.enqueueReleaseGLObjects(&images);
theQueue.finish();
LOGD("enqueueReleaseGLObjects() costs %d ms", getTimeInterval(t));
OpenCV T-API
但是,与其自己编写 OpenCL 代码,不如使用隐式调用 OpenCL 的 OpenCV T-API。您只需要将创建的 OpenCL 上下文传递给 OpenCV(通过cv::ocl::attachContext() ),并以某种
.方式将 OpenGL 纹理包装起来。不幸的是,OpenCL 缓冲区在内部保留,它不能包装在 OpenGL 纹理或 OpenCL 图像上 - 因此我们必须在此处复制图像数据:cv::UMat
int64_t t = getTimeMs();
cl::ImageGL imgIn (theContext, CL_MEM_READ_ONLY, GL_TEXTURE_2D, 0, texIn);
std::vector < cl::Memory > images(1, imgIn);
theQueue.enqueueAcquireGLObjects(&images);
theQueue.finish();
cv::UMat uIn, uOut, uTmp;
cv::ocl::convertFromImage(imgIn(), uIn);
LOGD("loading texture data to OpenCV UMat costs %d ms", getTimeInterval(t));
theQueue.enqueueReleaseGLObjects(&images);
t = getTimeMs();
//cv::blur(uIn, uOut, cv::Size(5, 5));
cv::Laplacian(uIn, uTmp, CV_8U);
cv:multiply(uTmp, 10, uOut);
cv::ocl::finish();
LOGD("OpenCV processing costs %d ms", getTimeInterval(t));
t = getTimeMs();
cl::ImageGL imgOut(theContext, CL_MEM_WRITE_ONLY, GL_TEXTURE_2D, 0, texOut);
images.clear();
images.push_back(imgOut);
theQueue.enqueueAcquireGLObjects(&images);
cl_mem clBuffer = (cl_mem)uOut.handle(cv::ACCESS_READ);
cl_command_queue q = (cl_command_queue)cv::ocl::Queue::getDefault().ptr();
size_t offset = 0;
size_t origin[3] = { 0, 0, 0 };
size_t region[3] = { (size_t)w, (size_t)h, 1 };
CV_Assert(clEnqueueCopyBufferToImage (q, clBuffer, imgOut(), offset, origin, region, 0, NULL, NULL) == CL_SUCCESS);
theQueue.enqueueReleaseGLObjects(&images);
cv::ocl::finish();
LOGD("uploading results to texture costs %d ms", getTimeInterval(t));
注意
当通过 OpenCL 图像包装器将修改后的图像放回原始 OpenGL 纹理时,我们必须再制作一个图像数据副本。
性能说明
为了比较在具有720p相机分辨率的Sony Xperia Z3上,通过C / C++代码(调用cv::Laplacian与cv::Mat),直接OpenCL调用(使用OpenCL图像进行输入和输出)和OpenCV T-API(调用cv::Laplacian
与cv::UMat
)完成的相同预览帧修改(Laplacian)的FPS:
- C/C++ 版本显示 3-4 fps
- 直接 OpenCL 调用显示 25-27 fps
- OpenCV T-API 显示 11-13 fps(由于额外的来回复制)
cl_image
cl_buffer
参考文献:
1、《Use OpenCL in Android camera preview based CV application》 Andrey Pavlenko, Alexander Panov