es 聚合操作(一)

前言

Elasticsearch除搜索以外,提供了针对ES 数据进行统计分析的功能。聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 衣服品牌的受欢迎程度
  • 这些衣服的平均价格、最高价格、最低价格
  • 这些衣服的每天、每月销量如何

使用场景

聚合查询可以用于各种场景,比如商业智能、数据挖掘、日志分析等等。

  • 电商平台的销售分析:统计每个地区的销售额、每个用户的消费总额、每个产品的销售量等,以便更好地了解销售情况和趋势。
  • 社交媒体的用户行为分析:统计每个用户的发布次数、转发次数、评论次数等,以便更好地了解用户行为和趋势,同时可以将数据按照地区、时间、话题等维度进行分析。
  • 物流企业的运输分析:统计每个区域的运输量、每个车辆的运输次数、每个司机的行驶里程等,以便更好地了解运输情况和优化运输效率。
  • 金融企业的交易分析:统计每个客户的交易总额、每个产品的销售量、每个交易员的业绩等,以便更好地了解交易情况和优化业务流程。
  • 智能家居的设备监控分析:统计每个设备的使用次数、每个家庭的能源消耗量、每个时间段的设备使用率等,以便更好地了解用户需求和优化设备效能。

基本语法

聚合查询的语法结构与其他查询相似,通常包含以下部分:

  • 查询条件:指定需要聚合的文档,可以使用标准的 Elasticsearch 查询语法,如 term、match、range 等等。
  • 聚合函数:指定要执行的聚合操作,如 sum、avg、min、max、terms、date_histogram 等等。每个聚合命令都会生成一个聚合结果。
  • 聚合嵌套:聚合命令可以嵌套,以便更细粒度地分析数据。
GET <index_name>/_search
{"aggs": {"<aggs_name>": { // 聚合名称需要自己定义"<agg_type>": {"field": "<field_name>"}}}
}
  • aggs_name:聚合函数的名称,需要自己定义
  • agg_type:聚合种类,比如是桶聚合(terms)或者是指标聚合(avg、sum、min、max等)
  • field_name:字段名称或者叫域名。

示例数据

#创建索引库
PUT /employees
{"mappings": {"properties": {"age":{"type": "integer"},"gender":{"type": "keyword"},"job":{"type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 50}}},"name":{"type": "keyword"},"salary":{"type": "integer"}}}
}PUT /employees/_bulk
{ "index" : {  "_id" : "1" } }
{ "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 }
{ "index" : {  "_id" : "2" } }
{ "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000}
{ "index" : {  "_id" : "3" } }
{ "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 }
{ "index" : {  "_id" : "4" } }
{ "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000}
{ "index" : {  "_id" : "5" } }
{ "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 }
{ "index" : {  "_id" : "6" } }
{ "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000}
{ "index" : {  "_id" : "7" } }
{ "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 }
{ "index" : {  "_id" : "8" } }
{ "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000}
{ "index" : {  "_id" : "9" } }
{ "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 }
{ "index" : {  "_id" : "10" } }
{ "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000}
{ "index" : {  "_id" : "11" } }
{ "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 }
{ "index" : {  "_id" : "12" } }
{ "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000}
{ "index" : {  "_id" : "13" } }
{ "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 }
{ "index" : {  "_id" : "14" } }
{ "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000}
{ "index" : {  "_id" : "15" } }
{ "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 }
{ "index" : {  "_id" : "16" } }
{ "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : {  "_id" : "17" } }
{ "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : {  "_id" : "18" } }
{ "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000}
{ "index" : {  "_id" : "19" } }
{ "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000}
{ "index" : {  "_id" : "20" } }
{ "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}

Metric Aggregation

—些数学运算,可以对文档字段进行统计分析,类比Mysql中的 min(), max(), sum() 操作。

  • 单值分析︰只输出一个分析结果
    • min, max, avg, sum
    • Cardinality(类似distinct Count)
  • 多值分析:输出多个分析结果
  • stats(统计), extended stats
  • percentile (百分位), percentile rank
  • top hits(排在前面的示例)

查询员工的最低、最高和平均工资

POST /employees/_search
{"aggs": {"max_salary": {"max": {"field": "salary"}},"min_salary": {"min": {"field": "salary"}},"avg_salary": {"avg": {"field": "salary"}}}
}

注意查询的时候如果不加 size = 0 会查询出来默认的 10 条数据

如果不想要数据只想要统计结果,可以加上 size = 0

POST /employees/_search
{"size": 0, "aggs": {"max_salary": {"max": {"field": "salary"}},"min_salary": {"min": {"field": "salary"}},"avg_salary": {"avg": {"field": "salary"}}}
}

stats 可以输出多个统计值

POST /employees/_search
{ "size": 0, "aggs": {"stats_salary": {"stats": {"field": "salary"}}}
}

cardinate 对搜索结果去重

POST /employees/_search
{"size": 0, "aggs": {"cardinate": {"cardinality": {"field": "job"}}}
}

这里需要注意:如果需要计算的字段是 text 类型,会报错

解决方案有两种:

方案一、开启 fielddata :

然后就可以对 job 进行聚合计算了

但需要注意的是:

  1. 内存使用:为大量或高基数的 text 字段启用 fielddata 可能会导致大量的内存使用,这可能会影响到集群的性能和稳定性。
  2. 性能:加载大量的 fielddata 可能会降低查询性能。
  3. 统计值:会对 job 进行分词 然后对分词进行 terms


可以看到上面示例,分类的指标都是分词后的结果

下面的示例也是一样的,统计的值也是分词后的结果

这里可以看到 分词后分类有 10 条数,但是使用 keyword 只有 7 条数据

原因就是,fielddata 对先分词 再对分词进行分类计算

PUT /employees/_mapping
{"properties" : {"job":{"type":  "text","fielddata": true}}
}# 对 Text 字段进行分词,分词后的terms
POST /employees/_search
{"size": 0,"aggs": {"jobs": {"terms": {"field":"job"}}}
}

方案二、keyword类型

如果你的目的是对某个字段进行排序或聚合,但不需要全文搜索,那么考虑使用 keyword 类型而不是 text 类型可能是一个更好的选择。keyword 类型默认启用 fielddata,并更适合此类操作。

上面这个示例 keyword 不会对字段的值进行分词,统计值 7 条数据

POST /employees/_search
{"size": 0,"aggs": {"cardinate": {"cardinality": {"field": "job.keyword"}}}
}

Bucket Aggregation

按照一定的规则,将文档分配到不同的桶中,从而达到分类的目的。ES提供的一些常见的 Bucket Aggregation。

  • Terms,需要字段支持filedata
    • keyword 默认支持fielddata
    • text需要在Mapping 中开启fielddata,会按照分词后的结果进行分桶
  • 数字类型
    • Range / Data Range
    • Histogram(直方图) / Date Histogram
  • 支持嵌套: 也就在桶里再做分桶

桶聚合可以用于各种场景,例如:

  • 对数据进行分组统计,比如按照地区、年龄段、性别等字段进行分组统计。
  • 对时间序列数据进行时间段分析,比如按照每小时、每天、每月、每季度、每年等时间段进行分析。
  • 对各种标签信息分类,并统计其数量。

获取job的分类信息

GET /employees/_search
{"size": 0, "aggs": {"jobs": {"terms": {"field": "job.keyword"}}}
}

聚合可配置属性有:

  • field:指定聚合字段
  • size:指定聚合结果数量
  • order:指定聚合结果排序方式

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。我们可以指定order属性,自定义聚合的排序方式:

GET /employees/_search
{"size": 0, "aggs": {"jobs": {"terms": {"field": "job.keyword","size": 10,"order": {"_count": "asc"}}}}
}

只对 salary 20000 以上的进行聚合

#限制聚合范围
POST /employees/_search
{"query": {"range": {"salary": {"gte": 20000}}},"size": 0, "aggs": {"jobs": {"terms": {"field": "job.keyword","size": 10,"order": {"_count": "asc"}}}}
}

自定义范围对 salary 分桶

#Salary Range分桶,可以自己定义 key
POST employees/_search
{"size": 0,"aggs": {"salary_range": {"range": {"field":"salary","ranges":[{"to":10000},{"from":10000,"to":20000},{"key":">20000","from":20000}]}}}
}

以 salary 5000 为间隔进行分桶

POST /employees/_search
{"size": 0, "aggs": {"salary_histrogram": {"histogram": {"field": "salary","interval": 5000}}}
}

也可以指定范围:

POST /employees/_search
{"size": 0, "aggs": {"salary_histrogram": {"histogram": {"field": "salary","interval": 5000,"extended_bounds": {"min": 0,"max": 60000}}}}
}

但是这种方式指定范围,好像默认也会输出到最大的那个桶,

我这里指定最大是 10000 但是也会把索引中最大的值输出,

既然默认都会输出最大值,那么指定超过最大值的数值,后面都是 0 也没有统计的必要了

这里感兴趣的小伙伴可以研究一下~

然后如果需要对指定范围的薪资进行统计,可以使用 range query

这样就只统计 20000 以内的数据了

POST /employees/_search
{"query": {"range": {"salary": {"gte": 0,"lte": 20000}}}, "size": 0, "aggs": {"salary_histrogram": {"histogram": {"field": "salary","interval": 5000}}}
}

top_hits

应用场景: 当获取分桶后,桶内最匹配的顶部文档列表

比如:不同工种中,年纪最大的3个员工的具体信息

POST /employees/_search
{"size": 0,"aggs": {"jobs": {"terms": {"field":"job.keyword"},"aggs":{"old_employee":{"top_hits":{"size":3,"sort":[{"age":{"order":"desc"}}]}}}}}
}

嵌套聚合

按照工作类型分桶,并统计工资信息

# 嵌套聚合1,按照工作类型分桶,并统计工资信息
POST employees/_search
{"size": 0,"aggs": {"Job_salary_stats": {"terms": {"field": "job.keyword"},"aggs": {"salary": {"stats": {"field": "salary"}}}}}
}

根据工作类型分桶,然后按照性别分桶,计算工资的统计信息

# 多次嵌套。根据工作类型分桶,然后按照性别分桶,计算工资的统计信息
POST employees/_search
{"size": 0,"aggs": {"Job_gender_stats": {"terms": {"field": "job.keyword"},"aggs": {"gender_stats": {"terms": {"field": "gender"},"aggs": {"salary_stats": {"stats": {"field": "salary"}}}}}}}
}

感谢观看!!!感兴趣的小伙伴可以关注收藏,持续更新中~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/758426.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

产品推荐 | 基于Xilinx Zynq UltraScale+打造的仙女座 Andromeda FPGA核心板

1、产品概述 仙女座Andromeda XZU65片上系统&#xff08;SoC&#xff09;核心板通过结合高端Xilinx Zynq UltraScale™ MPSoC系列芯片和高速DDR4 ECC SDRAM、eMMC flash、双QSPI flash、双Gigabit Ethernet PHY、USB 3.0形成了一个完整的、功能强大的嵌入式处理系统。得益于大…

Rhino与Revit API之间的转换

你好&#xff0c;我是九哥~ 最近发现Rhino.Inside.Revit的API手册更新了&#xff0c;终于可以开心的写RIR代码了&#xff0c;小伙伴快去试试吧&#xff0c;地址如下&#xff1a; https://www.rhino3d.com/inside/revit/1.0/reference/rir-api 今天我们先来聊聊 Rhino 与 Rev…

华为ensp中rip动态路由协议原理及配置命令(详解)

CSDN 成就一亿技术人&#xff01; 作者主页&#xff1a;点击&#xff01; ENSP专栏&#xff1a;点击&#xff01; CSDN 成就一亿技术人&#xff01; ————前言————— RIP&#xff08;Routing Information Protocol&#xff0c;路由信息协议&#xff09;是一种距离矢…

xss.pwnfunction(DOM型XSS)靶场

环境进入该网站 Challenges (pwnfunction.com) 第一关&#xff1a;Ma Spaghet! 源码&#xff1a; <!-- Challenge --> <h2 id"spaghet"></h2> <script>spaghet.innerHTML (new URL(location).searchParams.get(somebody) || "Somebo…

YOLO_you only look once

前言 计算机图形学的课程即将结束&#xff0c;我需要提交一份关于YOLO模型的学习报告。在这段时间里&#xff0c;我对YOLO进行了深入的学习和研究&#xff0c;并记录下了我的学习过程和心得体会。本文将详细介绍YOLO模型的原理、优缺点以及应用领域&#xff0c;希望能够为后续…

css 如何获取分辨率(使用@media查询)

在CSS中&#xff0c;可以使用media查询来应对不同的屏幕分辨率。例如&#xff0c;您可以为不同的屏幕宽度设置不同的样式规则。 /* 针对屏幕宽度小于600px的样式 */ media screen and (max-width: 599px) {body {background-color: lightblue;} }/* 针对屏幕宽度大于或等于600…

spring整合Sentinel

安装sentinel&#xff1a; 执行命令; java -jar sentinel-dashboard-1.8.6.jar 注:sentinel的默认端口为8080&#xff0c;容易出现tomcat的冲突。 当端口冲突&#xff0c;可以使用该指令修改sentinel的端口 默认账号和密码都为sentinel Springcloud整合sentinel&#xff1a;…

首个业内DNA存储技术规范发布

在DNA数据存储的检索过程中&#xff0c;采用了三个输入对应一个输出逻辑实现的算法模式来生成数据表示的模式。这一算法模式的设计是为了有效编码和解码存储在DNA分子上的信息。 其中提到的“扰动比例”δ(n)是一个关键概念&#xff0c;它衡量的是在总的细胞数目&#xff08;此…

UE4_官方动画内容示例1.2_动画蓝图——使用蓝图告知Actor播放动画

展示了两个示例&#xff1a;在其中一个示例中&#xff0c;使用蓝图告知Actor播放动画&#xff0c;在另外一个示例中&#xff0c;展示了告知Actor播放动画的动画蓝图&#xff08;例如&#xff0c;此示例展示了如何将变量从蓝图传递给动画蓝图&#xff0c;并演示了如何将现有姿势…

【LabVIEW FPGA入门】插值、输出线性波形

概述 NI 的可重配置 I/O (RIO) 硬件使开发人员能够创建自定义硬件&#xff0c;以在坚固耐用、高性能和模块化架构中执行许多任务&#xff0c;而无需了解低级 EDA 工具或硬件设计。使用 RIO 硬件轻松实现的此类任务之一是模拟波形生成。本教程介绍了使用 CompactRIO 硬件和 LabV…

【Unity】Plastic云同步总是password error

【背景】 Plastic是Unity的项目版本控制功能&#xff0c;可以方便在多个地点同步项目进度。原本用得挺爽的&#xff0c;结果今天遇到糟心事&#xff0c;明明Hub也正常登着&#xff0c;可Plastic的一个update的dll就是不停反复运行并报Password invalid。 【问题分析】 听说I…

简易版 RPC 框架实现 2.0 -netty实现

这一篇理解如果有难度&#xff0c;可能对netty不是很理解&#xff0c; 可以关注我netty专栏&#xff0c;还有另外一篇&#xff1a; 用 Netty 自己实现简单的RPC&#xff0c; 这一篇是学习netty的时候写的&#xff0c;更倾向于分析netty相关的知识&#xff0c; 今天我是学习dubb…

【每日算法】理论:常见AIGC模型; 刷题:力扣单调栈

上期文章 【每日算法】理论&#xff1a;生成模型基础&#xff1b; 刷题&#xff1a;力扣单调栈 文章目录 上期文章一、上期问题二、理论问题1、stable diffusion模型的网络架构2、T5的网络架构&#xff08;Text-To-Text Transfer Transformer模型&#xff09;3、SDXL模型4、DA…

基于FPGA的光纤通信系统的实现的优化技巧与方法

逻辑电路基本框架回顾 跨时钟域同步技术 读写操作相互独立时钟域 A 和 B 不需要一致的相位由专门逻辑控制读写操作的切换 高速数据的乒乓缓存技术

代码随想录(day7)——哈希表

Leetcode.454 四数相加Ⅱ&#xff1a; 454. 四数相加 II - 力扣&#xff08;LeetCode&#xff09; 对于本题&#xff0c;虽然使用四层循环嵌套可以解决&#xff0c;但是效率过慢&#xff0c;为&#xff0c;因此&#xff0c;可以将给定的四个数组&#xff0c;分成两组&#xff…

在服务器上配置源和安装anaconda

在服务器上配置源和安装anaconda解决无法import torch的方法&#xff1a; 一、在 anaconda上创建环境 1、创建环境 conda create -n yourname pythonx.x 2、查看环境 conda info --envs 3、进入环境 source activate your_env_name 4、退出环境 conda deactivate 5、…

程序计数器

程序计数器 JVM中的程序计数器(Program Counter Register)并非是广义上所指的物理寄存器&#xff0c;是对物理PC寄存器的一种抽象模拟 PC寄存器(程序计数器) PC寄存器用来存储指向下一条指令的地址&#xff0c;也即将要执行的指令代码。由执行引擎读取下一条指令。 它是一块很…

Adams Car——Adams car与Simulink联合仿真

1.修改悬架阻尼、刚度 ①先找到车辆悬架阻尼和刚度文件,这里以阻尼显示为例 ②修改阻尼曲线 找到对应车的文件 ③修改完后进行替换,刚度修改同理 2.转动惯量与车的质量修改

【晶振选型】VCTCXO TCXO 布线 参考

一、供电旁路电容 二、使能信号 三、输出的交流耦合 四、输出波形转换 五、压控滤波电容 最后 CTS的是真不错&#xff0c;1K可是-140啊

Linux---基本操作命令之用户管理命令

1.1useradd 添加新用户 root用户&#xff1a;/root 普通用户&#xff1a;/home/ 创建的用户还是david&#xff0c;只是在dave文件夹下 1.2 passwd 设置密码 给用户tony设置密码: 123456 1.3 id 查看用户是否存在 查看有没有这个用户&#xff1a;id 名字 gid&#xff1a;用…