YOLO_you only look once

前言

计算机图形学的课程即将结束,我需要提交一份关于YOLO模型的学习报告。在这段时间里,我对YOLO进行了深入的学习和研究,并记录下了我的学习过程和心得体会。本文将详细介绍YOLO模型的原理、优缺点以及应用领域,希望能够为后续学习者提供参考和启发。
580ebdf53bc2f.jpg

YOLO介绍

YOLO(You Only Look Once)是一种利用卷积神经网络进行目标检测的算法。它的特点是只需扫视一次图像,就能够确定图像中物体的类别和位置。由于只需看一次,YOLO被称为无区域(Region-free)的方法,与基于区域(Region-based)的方法不同,后者需要先找出图像中可能存在物体的区域。 也就是说,一个典型的基于区域的方法的流程是这样的:先用计算机图形学(或者深度学习)的方法,对图像进行分析,找出一些可能含有物体的区域,然后将这些区域裁剪下来,放入一个图像分类器中,进行分类。
image.png
YOLO是一种单阶段(one-stage)的算法,它与双阶段(two-stage)的算法,如R-CNN,不同,YOLO不需要先找出图像中可能存在物体的区域,而是将图像划分为多个网格(grid),每个网格预测多个边界框(bounding box)和类别概率。 YOLO的优势是速度快,适合实时检测的场景,但是它的准确度相对较低,容易出现漏检和误检的情况。YOLO目前已经发展到第八代(计算机更新迭代真是快啊,想想第一代YOLO还是2015年的事),每一代都在前一代的基础上进行了改进和提高。
image.png

Yolo以前的世界

YOLO算法是在近年来才出现和发展的,它改变了物体检测领域的面貌。YOLO以前的世界主要使用了以下3种物体检测算法:

  • 滑动窗口法:这种方法是最简单和最直观的,它通过在图像上滑动不同大小和形状的窗口,然后对每个窗口内的图像进行分类,来检测物体。这种方法的优点是可以检测任意形状的物体,但是缺点是非常慢,因为它需要对图像的每个位置和尺度进行分类,计算量非常大。
  • 基于区域的方法:这种方法是在滑动窗口法的基础上进行改进,它通过一些技术,如选择性搜索(Selective Search),来生成一些可能包含物体的候选区域,然后对这些区域进行分类和回归,来检测物体。这种方法的优点是可以减少计算量,提高检测速度,但是缺点是生成的候选区域可能不准确,导致漏检或误检的情况。
  • 基于区域的卷积神经网络(R-CNN)方法:这种方法是在基于区域的方法的基础上,引入了卷积神经网络(CNN)来提取图像特征,然后对这些特征进行分类和回归,来检测物体。这种方法的优点是可以利用CNN的强大的特征提取能力,提高检测的准确性,但是缺点是仍然需要生成候选区域,而且对每个区域都需要单独进行CNN的前向传播,计算量仍然很大。

All in all,没有YOLO的世界,非常“暗淡”。
a61e0db6f4351c849d963b857c6c89f6_95353_646_646.jpg

YOLO的优缺点

优点:
  • 速度快:这是因为它只需要看一次整张图片,就可以直接输出所有检测到的目标的信息,包括类别和位置。而且它也不需要像二阶段的算法那样先生成候选区域,再对每个区域再进行分类和回归,这样就可以大大的减少了计算量和时间。
  • 全局信息:YOLO算法会基于整张图片的全局信息进行预测,然后其他滑窗式的检测框架,只能基于局部图片信息进行推理。这样可以降低背景的误检率,提高检测的准确性。
  • 通用特征:YOLO算法学到的图片特征更为通用,可以适应不同的场景和任务。而且它在艺术品的检测上准确率高于其他的检测算法。
缺点:
  • 准确性较差:这是因为它将图片分割为多个网格,而每个网格只能预测固定数量的边界框和类别。如果图像中存在多物体密集挨着的时候或者小目标的时候,那检测效果不好。
  • 召回率较低:因为它对目标的尺度和形状的变化不够敏感,容易漏检一些目标。它也没有考虑目标之间的上下文关系,可能会误检一些不相关的物体。
  • 计算资源需求高:YOLO算法的网络结构较大且复杂,模型对计算资源需求较高,不适用于资源受限的设备。它的模型大小也较大,可能对部署和存储造成一定的挑战。

YOLO应用领域

首先要说的是YOLO真的是一项非常强大的算法,涉及的领域非常广,主要涉及网络结构、损失函数、锚框和输入分辨率等方面。现在YOLO已经被广泛应用于各个领域,如自动驾驶、器人、视频监控、医学诊断、遥感分析等。
ee7312ee0c2c26a7fb2cada1829647bb.jpg
YOLO是一种实时目标检测算法,它可以快速地识别出图像中的物体的类别和位置。YOLO可以应用于多个领域,如:

  • 自动驾驶和机器人:YOLO可以检测和跟踪车辆、行人、自行车和其他障碍物,提高安全性和效率 。
  • 视频监控和分析:YOLO可以识别视频序列中的动作、人物、表情和场景,用于安防、体育、人机交互等应用 。
  • 农业和生物识别:YOLO可以检测和分类作物、害虫、疾病和动物,协助精准农业和生物多样性保护 。
  • 医学和健康:YOLO可以检测癌症、皮肤病、药片等,提高诊断的准确性和治疗的效果 。
  • 遥感和城市规划:YOLO可以检测和分类卫星和航空图像中的物体,如建筑、道路、水体、森林等,用于土地利用、灾害评估、城市发展等应用 。

结论

YOLO是一种非常强大和灵活的算法,它可以适应不同的场景和任务,为人类的生活和工作带来便利和价值。然而,我们也要认识到它的局限性和挑战,如准确性较差、召回率较低以及计算资源需求高等。在未来的研究和应用中,可以进一步改进YOLO算法,提高其性能和适用性,为计算机领域的发展做出更大的贡献。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/758414.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css 如何获取分辨率(使用@media查询)

在CSS中,可以使用media查询来应对不同的屏幕分辨率。例如,您可以为不同的屏幕宽度设置不同的样式规则。 /* 针对屏幕宽度小于600px的样式 */ media screen and (max-width: 599px) {body {background-color: lightblue;} }/* 针对屏幕宽度大于或等于600…

spring整合Sentinel

安装sentinel: 执行命令; java -jar sentinel-dashboard-1.8.6.jar 注:sentinel的默认端口为8080,容易出现tomcat的冲突。 当端口冲突,可以使用该指令修改sentinel的端口 默认账号和密码都为sentinel Springcloud整合sentinel:…

首个业内DNA存储技术规范发布

在DNA数据存储的检索过程中,采用了三个输入对应一个输出逻辑实现的算法模式来生成数据表示的模式。这一算法模式的设计是为了有效编码和解码存储在DNA分子上的信息。 其中提到的“扰动比例”δ(n)是一个关键概念,它衡量的是在总的细胞数目(此…

UE4_官方动画内容示例1.2_动画蓝图——使用蓝图告知Actor播放动画

展示了两个示例:在其中一个示例中,使用蓝图告知Actor播放动画,在另外一个示例中,展示了告知Actor播放动画的动画蓝图(例如,此示例展示了如何将变量从蓝图传递给动画蓝图,并演示了如何将现有姿势…

【LabVIEW FPGA入门】插值、输出线性波形

概述 NI 的可重配置 I/O (RIO) 硬件使开发人员能够创建自定义硬件,以在坚固耐用、高性能和模块化架构中执行许多任务,而无需了解低级 EDA 工具或硬件设计。使用 RIO 硬件轻松实现的此类任务之一是模拟波形生成。本教程介绍了使用 CompactRIO 硬件和 LabV…

【Unity】Plastic云同步总是password error

【背景】 Plastic是Unity的项目版本控制功能,可以方便在多个地点同步项目进度。原本用得挺爽的,结果今天遇到糟心事,明明Hub也正常登着,可Plastic的一个update的dll就是不停反复运行并报Password invalid。 【问题分析】 听说I…

简易版 RPC 框架实现 2.0 -netty实现

这一篇理解如果有难度,可能对netty不是很理解, 可以关注我netty专栏,还有另外一篇: 用 Netty 自己实现简单的RPC, 这一篇是学习netty的时候写的,更倾向于分析netty相关的知识, 今天我是学习dubb…

【每日算法】理论:常见AIGC模型; 刷题:力扣单调栈

上期文章 【每日算法】理论:生成模型基础; 刷题:力扣单调栈 文章目录 上期文章一、上期问题二、理论问题1、stable diffusion模型的网络架构2、T5的网络架构(Text-To-Text Transfer Transformer模型)3、SDXL模型4、DA…

基于FPGA的光纤通信系统的实现的优化技巧与方法

逻辑电路基本框架回顾 跨时钟域同步技术 读写操作相互独立时钟域 A 和 B 不需要一致的相位由专门逻辑控制读写操作的切换 高速数据的乒乓缓存技术

代码随想录(day7)——哈希表

Leetcode.454 四数相加Ⅱ: 454. 四数相加 II - 力扣(LeetCode) 对于本题,虽然使用四层循环嵌套可以解决,但是效率过慢,为,因此,可以将给定的四个数组,分成两组&#xff…

在服务器上配置源和安装anaconda

在服务器上配置源和安装anaconda解决无法import torch的方法: 一、在 anaconda上创建环境 1、创建环境 conda create -n yourname pythonx.x 2、查看环境 conda info --envs 3、进入环境 source activate your_env_name 4、退出环境 conda deactivate 5、…

程序计数器

程序计数器 JVM中的程序计数器(Program Counter Register)并非是广义上所指的物理寄存器,是对物理PC寄存器的一种抽象模拟 PC寄存器(程序计数器) PC寄存器用来存储指向下一条指令的地址,也即将要执行的指令代码。由执行引擎读取下一条指令。 它是一块很…

Adams Car——Adams car与Simulink联合仿真

1.修改悬架阻尼、刚度 ①先找到车辆悬架阻尼和刚度文件,这里以阻尼显示为例 ②修改阻尼曲线 找到对应车的文件 ③修改完后进行替换,刚度修改同理 2.转动惯量与车的质量修改

【晶振选型】VCTCXO TCXO 布线 参考

一、供电旁路电容 二、使能信号 三、输出的交流耦合 四、输出波形转换 五、压控滤波电容 最后 CTS的是真不错,1K可是-140啊

Linux---基本操作命令之用户管理命令

1.1useradd 添加新用户 root用户:/root 普通用户:/home/ 创建的用户还是david,只是在dave文件夹下 1.2 passwd 设置密码 给用户tony设置密码: 123456 1.3 id 查看用户是否存在 查看有没有这个用户:id 名字 gid:用…

Spring MVC文件下载配置

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 文件下载 在Spring MVC中通常利用commons-io实现文件下载,示例代码如下: Controller RequestMapping("......") public class DownloadC…

外卖项目:使用AOP切面编程实现增删改查的操作日志记录(debug断点调试)

文章目录 一、问题描述二、问题分析三、断掉调试四、代码展示 一、问题描述 需求:将项目中增、删、改相关接口的操作日志记录到数据库表中。 操作日志信息包含: 操作人、操作时间、执行方法的全类名、执行方法名、方法运行时参数、返回值、方法执行时…

MySQL数据库基本操作和管理

目录 一.MySQL数据库基本操作 1.SQL分类 (1)数据库:database (2)表:table,行:row 列:column (3)索引:index (4&…

Linux网络编程: TCP协议首部与可选项简述

一、TCP/IP五层模型 物理层(Physical Layer):物理层是最底层,负责传输比特流(bitstream)以及物理介质的传输方式。它定义了如何在物理媒介上传输原始的比特流,例如通过电缆、光纤或无线传输等。…

python中字典相关知识点总结

1.字典的定义 字典:在Python中,字典是一系列键-值对。每个键都与一个值相关联,程序员可以通过键来访问与之相关联的值。 实际举例: student{name:xincun,age:18} 通过实例我们可以发现,键-值对是两个相关联的值。指…