【NLP笔记】Transformer

文章目录

  • 基本架构
  • Embedding
  • Encoder
    • self-attention
    • Multi-Attention
    • 残差连接+LayerNorm
  • Decoder
    • Mask&Cross Attention
    • 线性层&softmax
    • 损失函数

论文链接: Attention Is All You Need

参考文章:

  • 【NLP】《Attention Is All You Need》的阅读笔记
  • 一文了解Transformer全貌(图解Transformer)
  • Transformer是什么?看完这篇你就醍醐灌顶
  • Transformer 模型详解
  • 深度学习之Transformer笔记
  • The illurstrated Transformer

Transformer是自然语言处理领域具有里程碑意义的研究成果,后来也逐渐被广泛用于视觉信息处理与分析。之前在总结RNN时有说到,存在一种从长度为M的输入到长度为N的输出的这种seq2seq结构,通过Encoder-Decoder的结构实现对向量化内容的编解码。

在这里插入图片描述

基本架构

在这里插入图片描述
Transformer的整体架构如上图所示,但从结构来看会觉得很复杂,可以一步一步理解。首先是N层堆叠的编码器结构和N层堆叠的解码器结构组成,如下图所示:
在这里插入图片描述
再进一步细化,Encoder的结构都是相同的,但是和RNN不同,Encoder不同的层并不会共享权重。编码器的输入首先通过一个self-attention层,self-attention层的输出反馈给前馈神经网络,如图所示:
在这里插入图片描述
解码器也有编码器的两个层,但在这两层之间有一个注意层,帮助解码器关注输入句子的相关部分。
在这里插入图片描述

Embedding

Transformer的输入是Embedding后的文本向量,该向量化过程由两部分结果相加得到的,通常向量化表征的维度一般为256或者512(实验确定值,一个时计算资源限制,一个是实验验证效果较好),如图所示:
在这里插入图片描述

  1. 词向量化:通过word2vec的向量化方式,或者通过构造神经网络编码层实现对文本进行向量化;
  2. 位置编码:对于偶数位置采用sin,奇数位置采用cos的转换方式进行编码。其中 p o s pos pos是时序位置索引, i i i代表位置编码的维度索引。位置编码是一个向量,其维度与模型的嵌入维度( d m o d e l d_{model} dmodel)相同。因此, i i i 的值会从0遍历到 d m o d e l − 1 d_{model}-1 dmodel1,表示位置编码向量中的每一个元素。
    在这里插入图片描述
    选择正弦和余弦编码的原因:
  • 正弦和余弦函数是有界的,其值域在[-1, 1]之间。这有助于限制位置编码的大小,使得训练过程更加稳定。如果位置编码的值过大,可能会导致模型在训练过程中出现梯度爆炸或消失的问题,从而影响模型的性能。
  • 正弦和余弦函数在周期性和连续性方面表现出色。这意味着对于相邻的位置,其位置编码的变化是平滑的,有助于模型捕捉序列中单词之间的相对位置关系。这种平滑性也有助于模型在推理时处理未见过的长序列,因为模型可以通过插值来估计未知位置的位置编码。

每个向量化后单词都会流经编码器的两层,如下:
在这里插入图片描述

Encoder

编码器接收文本向量列表作为输入,它通过将这些向量传递到“self-attention”层,然后传入前馈神经网络,然后将输出向上发送到下一个编码器来处理。

self-attention

计算self-attention的第一步是从编码器的每个输入向量中创**「建三个向量」(在本例中,输入是每个单词的嵌入)。因此,我们为每个单词创建一个「查询向量」、一个「键向量」和一个「值向量」。这些向量是通过将嵌入乘以我们在训练过程中「训练的三个矩阵」**来创建的,这三个矩阵是需要学习的参数矩阵 W Q 、 W K 、 W V W^Q、W^K、W^V WQWKWV
在这里插入图片描述

假如Thinking、Machines这两个单词经过Embedding后得到向量是 x 1 , x 2 x_{1},x_{2} x1,x2,那么 q 1 = x 1 W Q , q 2 = x 2 W Q q_{1}=x_{1}W^Q,q_{2}=x_{2}W^Q q1=x1WQ,q2=x2WQ,同理可得 k 1 = x 1 W K , k 2 = x 2 W K k_{1}=x_{1}W^K,k_{2}=x_{2}W^K k1=x1WK,k2=x2WK v 1 = x 1 W V , v 2 = x 2 W V v_{1}=x_{1}W^V,v_{2}=x_{2}W^V v1=x1WV,v2=x2WV。计算self-attention的第二步是计算分数,假设我们正在计算例子中第一个单词“Thinking”的self-attention,计算当前词与输入句子的每个词的之间相关性:
在这里插入图片描述
第三步和第四步是将分数除以 d m o d e l \sqrt {d_{model}} dmodel ( 64 = 8 \sqrt {64}=8 64 =8)(这一步的操作是为了让梯度的传播更稳定,该值是实验设定,非固定值),然后通过softmax操作传递结果。Softmax将分数标准化,使其全部为正值,加起来等于1。
在这里插入图片描述
当最终通过softmax计算出来的归一化分数越高时,说明目标词汇和当前词汇的相关性更高。
第五步是将每个value vector乘以softmax分数。这样通过对计算出来的关联性分数乘以向量,就可以实现对不同部分词汇有不同的关注度。
第六步是对加权值向量求和。这将在该位置(对于第一个单词)生成self-attention层的输出, z i = ∑ i = 1 N s o f t m a x ( q i k i d m o d e l ) v i z_{i}=\sum_{i=1}^{N}softmax(\frac {q_{i}k_{i}}{\sqrt {d_{model}}})v_{i} zi=i=1Nsoftmax(dmodel qiki)vi如图所示:
在这里插入图片描述
在Transformer中,整个过程是矩阵计算,结合上述步骤,矩阵运算可表达为:
在这里插入图片描述

Multi-Attention

论文中通过添加一种称为“多头”注意力机制,进一步细化了self-attention层。这从两个方面提高了注意层的性能:

  1. 它扩展了模型关注不同位置的能力,self-attention的注意力都集中在自身邻近位置,多头注意力则可以扩散注意力至整个句子;
  2. 它为注意力层提供了多个“表示子空间”。对于多头注意力,不仅有一组,而且有多组Query/Key/Value 权重矩阵(Transformer设置了8个注意力头,因此每个编码器/解码器有八组)。这些集合中的每一个都是随机初始化的。在训练之后,每一组注意力权重( W Q 、 W K 、 W V W^{Q}、W^{K}、W^{V} WQWKWV)将输入词嵌入(或来自较低编码器/解码器的向量)投影到不同的表示子空间;
    在这里插入图片描述
    如果我们做上面所述的同样的self-attention计算,只需使用不同的权重矩阵进行8次不同的计算,我们最终得到8个不同的Z矩阵。
    而前馈层则不需要8个矩阵——它需要一个矩阵(每个单词对应一个向量)。这时就需要一种方法把这8个矩阵压缩成一个矩阵,即将它们乘以一个额外的权重矩阵 W O W^{O} WO进行一次变换:
    在这里插入图片描述
    多头注意力机制的整体流程就可以表示如下:
    在这里插入图片描述

残差连接+LayerNorm

每个编码器中的每个子层(self-attention,ffnn)在其周围都有一个残差连接,然后是一个层进行归一化步骤。
在这里插入图片描述

  • 反向传播链式法则易产生梯度消失的问题,而残差则通过相加和shortcut操作避免了梯度为0的情况出现,可以缓解梯度消失。
  • Layer Normalization是对每个样本单独计算均值和方差,因此不需要考虑不同位置之间的相关性,也不会破坏向量的位置信息。相比之下,Batch Normalization会计算一个batch内所有样本的均值和方差,这可能会破坏Transformer中每个位置的高维向量表示,因为每个位置都包含重要的语义信息。Layer Normalization能够解决Transformer中的内部协变量位移问题。内部协变量位移是指在训练过程中,神经网络层输入的分布在不断变化,导致网络难以训练。Layer Normalization通过规范化层的输出,使得每一层的输入都保持稳定的分布,有助于加速模型的训练过程并提升模型的性能。

Decoder

Mask&Cross Attention

Decoder的初始输入为开始符号转换成对应的向量作为初始的query向量 Q Q Q,编码器中学习到的注意力向量 K 、 V K、V KV会作为解码器的Key矩阵和 Value矩阵来使用,之后的每进行一次解码,对应的query会加上上一步的输出结果转换成的向量,再进行下一步的解码,直到解码器输出终止符(如:<EOS>):

Decoder解码过程


解码器中的两大特点:

  1. mask attention:mask注意力就是在翻译am时,不会参考后续向量数据,仅考虑上文向量;
  2. cross attention:cross含义就是其中一个序列作为输入的Q(Query),定义了输出的序列长度;另一个序列则提供输入的K(Key)和V(Value)。解码器 Attention层是使用前一层的输出来构造Query 矩阵,而Key矩阵和 Value矩阵来自于编码器最终的输出,也就是上面描述的解码过程。

线性层&softmax

最后一个线性层的工作,后面是一个 Softmax 层。线性层是一个简单的全连接神经网络,它将解码器堆栈产生的向量投影到一个更大的向量中,称为 logits 向量,该向量表示当前输出为当前索引映射词汇的概率,最终输出概率最大的预测结果。
在这里插入图片描述

损失函数

最终的目标是使得每个输出结果和目标结果之间的差距最小,一般采用的是交叉熵损失:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/756607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF按钮相关

跟着官网敲的按钮相关的内容,还涉及了wpf很多其他的知识 1.创建基本按钮 <Grid><StackPanel HorizontalAlignment"Left"><Button>Button1</Button><Button>Button2</Button><Button>Button3</Button></StackPan…

如何在gitee上fork github上面的项目,并保持同步更新

前言 当看到github上面比较好的项目&#xff0c;想用到自己的项目&#xff0c;又不想仓库别人看&#xff0c;同时网络不好&#xff0c;囊中又羞涩的情况下&#xff0c;怎么办&#xff1f; 可以考虑用gitee来同步更新github上面的项目。 一、在gitee创建私有仓库 新建的是选择…

Windows电脑设置自动关机的教程

前言 说来也是搞笑&#xff1a;朋友跟我诉苦说&#xff0c;他有时候下班忘了关闭电脑&#xff0c;结果经常因为电脑不关机导致被领导扣工资。 说到扣工资这个问题&#xff0c;直接仲裁就好啦&#xff01;哈哈哈&#xff0c;突然又是一波泼天的富贵来临&#xff0c;这必须要接住…

计算方法——数据拟合

1、引入&#xff1a;单变量数据拟合 原先的插值要求给出的数据点要在拟合的函数上&#xff0c;但数据拟合&#xff0c;只需整体“近似”&#xff0c;不强求所有的数据点一致 假设给出数据&#xff1a; 那么 偏差 的定义为&#xff1a; 但是偏差“大小”&#xff0c;最好是用绝…

计算机网络:数据交换方式

计算机网络&#xff1a;数据交换方式 电路交换分组交换报文交换传输对比 本博客介绍计算机之间数据交换的三种方式&#xff0c;分别是电路交换、分组交换以及报文交换。 电路交换 我们首先来看电路交换&#xff0c;在电话问世后不久&#xff0c;人们就发现要让所有的电话机都…

c++类和对象(中)类的6个默认成员函数及const成员函数

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 今日主菜&#xff1a;类和对象 主厨&#xff1a;邪王真眼 所属专栏&#xff1a;c专栏 主厨的主页&#xff1a;Chef‘s blog 前言&#xff1a; 咱们之前也是…

【开发环境搭建篇】IDEA安装和配置

作者介绍&#xff1a;本人笔名姑苏老陈&#xff0c;从事JAVA开发工作十多年了&#xff0c;带过大学刚毕业的实习生&#xff0c;也带过技术团队。最近有个朋友的表弟&#xff0c;马上要大学毕业了&#xff0c;想从事JAVA开发工作&#xff0c;但不知道从何处入手。于是&#xff0…

C语言——结构体自定义类型

目录 结构体类型 声明结构体 结构体的特殊声明 创建结构体变量和初始化结构体变量 结构体的自引用 结构体内存对齐 对齐规则 内存对齐存在意义 默认对齐数的修改 结构体传参 结构体实现位段 了解位段是什么 位段的内存分配 位段有跨平台的问题及使用注意事项 C语言…

Spark-Scala语言实战(3)

在之前的文章中&#xff0c;我们学习了如何在来如何在IDEA离线和在线安装Scala&#xff0c;想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark-Scala语言实…

[Halcon学习笔记]标定常用的Halcon标定板规格及说明

1、介绍 大多数标定的要求都是以实心圆或方格来作为标志点&#xff0c;所以一般的标定板为棋盘格或矩阵圆点图&#xff0c;高精度的相机标定过程中&#xff0c;大多是以比较明确的特征点来作为参考&#xff0c;所以通过识别标定板的圆形&#xff0c;拟合出精确的中心位置&…

3.19总结

A计划 题解&#xff1a;这题其实就是一个很简单的三维搜索&#xff0c;有了一个传送门&#xff0c;并且要确定是否传过去的对应位置是墙&#xff0c;防止被装死&#xff0c;同事呢又要在对应的t时间内完成&#xff08;不一定要卡着t时间恰好完成&#xff09; #include<ios…

linux单机部署hadoop

1.下载安装包 https://archive.apache.org/dist/hadoop/common/ 2.上传压缩 3.修改配置文件 1)设置JDK的路径 cd /usr/local/software/hadoop-3.1.3/etc/hadoop vi hadoop-env.sh export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.402.b06-1.el7_9.x86_64/ 查看…

1Panel应用推荐:Nginx Proxy Manager

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…

springBoot---过滤器,监听器,拦截器

过滤器&#xff0c;监听器&#xff0c;拦截器 一、理解它们 看里十几篇博客&#xff0c;总算有点小明白&#xff0c;总的来讲&#xff0c;两张图可以让我看明白点。 通过两幅图我们可以理解拦截器和过滤器的特点 1、过滤器 过滤器是在请求进入tomcat容器后&#xff0c;但请求…

2024流星全自动网页生成系统重构版源码

2024流星全自动网页生成系统重构版源码 源码介绍 流星全自动网页生成系统重构版源码分享&#xff0c;所有模板经过精心审核与修改&#xff0c;完美兼容小屏手机大屏手机&#xff0c;以及各种平板端、电脑端和360浏览器、谷歌浏览器、火狐浏览器等等各大浏览器显示。 为用户使…

【第十五章】改进神经网络学习方式-手写数字识别重新编码实现

让我们来实现我们在之前讨论过的想法。我们将开发一个新的程序&#xff0c;network2.py&#xff0c;这是我们之前开发的程序 network.py 的改进版本。如果你有一段时间没有看过 network.py&#xff0c;那么花几分钟快速阅读之前的讨论可能会有所帮助。它只有 74 行代码&#xf…

44.for语句

目录 一.什么是for语句 二.语法格式 三.举例 四.视频教程 一.什么是for语句 C语言中除了while和do while循环语句&#xff0c;还有for循环语句&#xff0c;所以for语句也是循环语句。 二.语法格式 for&#xff08;表达式1&#xff1b;表达式2&#xff1b;表达式3&#xf…

8.python中的元组

8.python中的元组 虽然说元组用的不是很多&#xff0c;但是还是讲一下。元组其实可以看为是一个列表&#xff0c;不可变的列表。操作和列表都差不多。 元组&#xff08;tuple&#xff09;是Python中的一种基本数据结构类型&#xff0c;它是不可变的序列&#xff0c;意味着一旦…

【爬虫】实战-爬取Boss直聘信息数据

专栏文章索引&#xff1a;爬虫 所用工具&#xff1a; 自动化工具&#xff1a;DrissionPage 目录 一、找到目标数据(2个确定)​ 1.确定目标网页 2.确定目标网址 二、编写代码​ 三、查看数据​ 五、总结 一、找到目标数据(2个确定) 1.确定目标网页 打开目标网站 网站&am…

DolphinScheduler运维-页面加载缓慢

一、问题描述 DolphinScheduler调度平台的UI界面加载缓慢,项目中的任务实例加载时间过长,需要解决这个问题,提高DolphinScheduler平台UI页面的加载速度。 二、原因分析 经过分析发现,任务实例过多是导致UI加载缓慢的主要原因。由于任务实例无法直接删除,根据文档了解到需…