【Preprocessing数据预处理】之Pipeline

在机器学习中,管道(Pipeline)是一种工具,用于将数据预处理、特征选择、模型构建等一系列步骤封装成为一个整体流程。这样做的好处是可以简化代码,避免数据泄露,并使模型的训练和预测过程更加高效和可重复。在 `scikit-learn` 库中,`Pipeline` 类是实现这一目的的关键工具。

以下是如何使用 `scikit-learn` 的 `Pipeline` 来创建一个包含数据预处理(如标准化)、特征选择和分类器的完整机器学习流程的例子:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report# 创建数据集
X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)# 创建管道
pipe = Pipeline([('scaler', StandardScaler()), # 第一步:数据标准化('selector', SelectKBest(score_func=f_classif, k=10)), # 第二步:特征选择,选出10个最佳特征('classifier', LogisticRegression(random_state=42)) # 第三步:分类器
])# 训练模型
pipe.fit(X_train, y_train)# 预测测试集
y_pred = pipe.predict(X_test)# 评估模型
print(classification_report(y_test, y_pred))

这个示例展示了如何构建一个流程,从预处理开始,到特征选择,最后是使用逻辑回归进行分类。通过 `Pipeline`,所有这些步骤被封装为一个对象,这意味着:

1. 避免数据泄露:每个步骤都是按顺序执行的,特别是在交叉验证或网格搜索中,确保了数据泄露的风险最小化,因为对于每个训练折叠,预处理和特征选择只基于训练数据来拟合。

2. 代码简洁:将整个流程封装为单个对象使得代码更加简洁、易于理解和维护。

3. 方便的模型部署:训练完成后,这个管道就可以直接用于新数据的预测,而无需重复进行数据预处理和特征选择等步骤,这对于模型的部署非常方便。

——————————————————————————————————————————

另外,`Pipeline`与交叉验证结合起来是一个非常强大的方法,它可以帮助你在完全自动化的过程中进行模型评估和参数选择。这种方法特别有用,因为它可以确保你的预处理步骤(如标准化、归一化等)是在每次交叉验证的训练阶段内进行的,从而避免数据泄露。以下是一个结合使用`Pipeline`和交叉验证的示例。

### 示例:使用`Pipeline`进行交叉验证

首先,导入必要的库:

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression# 加载数据集
X, y = load_iris(return_X_y=True)# 创建包含预处理步骤和估计器的Pipeline
pipeline = make_pipeline(StandardScaler(),LogisticRegression(solver='liblinear', multi_class='ovr')
)# 执行交叉验证
scores = cross_val_score(pipeline, X, y, cv=5)print("交叉验证分数:", scores)
print("平均分数:", scores.mean())

在这个示例中,我们首先创建了一个包含`StandardScaler`(标准化预处理步骤)和`LogisticRegression`(逻辑回归模型)的`Pipeline`。然后,我们使用`cross_val_score`函数来进行交叉验证。这个函数会自动处理数据分割,确保每次训练时的数据都是经过相应预处理的。通过这种方式,我们可以获得一个关于模型性能的稳健估计,同时避免因预处理步骤而导致的数据泄露问题。

通过这种组合使用`Pipeline`和交叉验证的方法,可以确保你的数据预处理步骤和模型训练是在每一折交叉验证的训练数据上独立完成的,从而使得模型评估更加准确和可靠。

——————————————————————————————————————————

最后,在机器学习中,使用`Pipeline`结合`GridSearchCV`进行模型选择和超参数优化是一种非常高效的方法。这种方式允许你在一个连贯的流程中自动完成数据预处理、特征选择、模型训练等步骤,并且可以避免数据泄露问题。`RidgeCV`是一种特定的用于岭回归的交叉验证方法,但在这里我们将专注于如何结合`Pipeline`与`GridSearchCV`进行更通用的交叉验证和参数搜索。

以下是一个示例,展示如何结合使用`Pipeline`、`GridSearchCV`,并以岭回归(Ridge Regression)作为模型来进行参数优化。

示例:使用`Pipeline`和`GridSearchCV`进行岭回归优化

首先,导入必要的库:

```python
from sklearn.datasets import load_boston
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
```

接下来,加载数据集并分割为训练集和测试集:

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression# 加载数据集
X, y = load_iris(return_X_y=True)# 创建包含预处理步骤和估计器的Pipeline
pipeline = make_pipeline(StandardScaler(),LogisticRegression(solver='liblinear', multi_class='ovr')
)# 执行交叉验证
scores = cross_val_score(pipeline, X, y, cv=5)print("交叉验证分数:", scores)
print("平均分数:", scores.mean())

通过上述步骤,我们不仅在数据预处理阶段使用了`Pipeline`来保证步骤的顺序和隔离,还利用`GridSearchCV`在训练集上自动寻找了岭回归的最佳正则化系数(`alpha`)。这种方式既简化了代码,也保证了模型的泛化能力和性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/743297.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信息系统项目管理师--沟通管理

IT 项⽬成功有关的最重要的四个因素是:主管层的⽀持、⽤户参与、有经验的项⽬经理和清晰的业务⽬标 项⽬沟通管理是确保及时、正确地产⽣、收集、分发、存储和最终处理项⽬信息所需的过程 项⽬沟通管理由两部分组成:⼀是制定策略,确保沟通对…

leetcode一天一题-第1天

为了增加自己的代码实战能力,希望通过刷leetcode的题目,不断提高自己,增加对代码的理解,同时开拓自己的思维方面。 题目名称:两数之和 题目编号:1 题目介绍: 给定一个整数数组 nums 和一个整数…

中介者模式(Mediator Pattern)

中介者模式 说明 中介者模式(Mediator Pattern)属于行为型模式,又称为调解者模式或调停者模式。用一个中介对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使其耦合松散,而且可以独立…

Selenium WebDriver 中用于查找网页元素的两个方法

这里提供了 Selenium WebDriver 中用于查找元素的两个方法:find_element() 和 find_elements()。 find_element(byid, value: Optional[str] None) → selenium.webdriver.remote.webelement.WebElement 这个方法用于查找满足指定定位策略(By strategy&…

【AI大模型应用开发】【LangChain系列】9. 实用技巧:大模型的流式输出在 OpenAI 和 LangChain 中的使用

大家好,我是同学小张,日常分享AI知识和实战案例欢迎 点赞 关注 👏,持续学习,持续干货输出。v: jasper_8017 一起交流💬,一起进步💪。微信公众号也可搜【同学小张】 🙏 本…

【RHCSA问答题】第十五章 访问Linux文件系统(上)

系列文章目录 第一章 红帽企业Linux入门 第二章 访问命令行 第三章 从命令行管理文件(上) 第三章 从命令行管理文件(下) 第五章 创建、查看和编辑文本文件(上) 第五章 创建、查看和编辑文本文件&#xff0…

Python使用openpyxl库或pandas库创建.xlsx格式的Excel文件,并向文件不同的sheet按行或按列写入内容

import openpyxl# 创建-一个Workbook对象 wb openpyxl.Workbook()# 创建多个工作表 sheet1 wb.active sheet1.title "s1"sheet2 wb.create_sheet("s2")# 在不同的工作表中写入数据 sheet1["A1"] Data for Sheet1 sheet1["A2"] D…

软考架构师-案例题分享(带答案)

目录 1.质量属性+架构风格2.UML建模3.数据流图4.大数据架构5.鸿蒙架构5.SOA和企业应用集成7.微服务和 SOA8. 架构评估9.数据库设计1.质量属性+架构风格 某软件公司为电子商城开发一套应用程序集成开发环境,以提高开发电子商城应用程序的质量和效率。在项目之初,公司的系统分…

「jQuery系列」jQuery 校验表单(Validate)

文章目录 一、校验表单(Validate)1. 基本用法2. 验证规则3. 国际化4. 插件扩展 二、Validate常用方法1. 基本验证2. 自定义验证规则3. 远程验证(通过 AJAX)4. 提交处理(submitHandler)5. 忽略某些元素的验证…

Edge浏览器可以多开的几种方法

新建用户数据目录: 首先,安装一个Edge浏览器或者谷歌浏览器。在电脑的D盘(或其他盘)新建一个文件夹,例如命名为“Edge”。在“Edge”文件夹下再新建两个子文件夹,分别命名为“Edge2”和“Edge3”&#xff0…

【2024年5月备考新增】《软考真题分章练习(答案解析) - 4 项目范围管理(高项)》

点击跳转无答案版 1、() includes the processes required to ensure that the project includes all the work required , and only the work required , to complete the project successfully . Managing the project scope is primarily concerned with defining and con…

数学问题难解?新研究提出MathScale方法,让AI更懂数学推理

引言:数学问题解决中的语言模型挑战 数学问题解决是一个复杂的认知过程,它要求参与者不仅要掌握数学知识,还要能够进行多步骤的逻辑推理。近年来,大语言模型(LLMs)在解决问题方面展现出了显著的能力&#…

18. 查看帖子详情

文章目录 一、建立路由二、开发GetPostDetailHandler三、编写logic四、编写dao层五、编译测试运行 一、建立路由 router/route.go v1.GET("/post/:id", controller.GetPostDetailHandler)二、开发GetPostDetailHandler controller/post.go func GetPostDetailHand…

java中集合类的使用场景和区别

无极低码 :https://wheart.cn Java Collection Interface 使用场景:Collection是所有单值集合类型的根接口,包括List、Set等。它提供了一组通用方法来添加、删除、检查元素存在性、获取集合大小等。区别:它是抽象概念,不关心元素是否有序或唯一。Java List Interface 使用…

java数据结构与算法刷题-----LeetCode90. 子集 II

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 解题思路:时间复杂度O( n 2 ∗ n n^2*n n2∗n),空间复杂度O(n) 7…

C#中的小数

一、关于类型 在C#中,可以用以下数据类型来存放小数: float: 单精度浮点数(是32位单精度浮点数类型) 优点:占用空间小,适合存储大量小数值;性能较好。缺点:精度有限,可能…

JAVA初阶数据结构栈(工程文件后续会上传)(+专栏数据结构练习是完整版)

1.栈的概念讲解(Stack)) 定义:栈是一种先进后出的数据结构 要想拿到12就要把它头上的所有东西给移出去 2.栈的实现(代码) 2.1栈的方法逻辑的讲解 (1)新建一个测试类Frank (2)进…

机器学习模型—决策树

机器学习模型—决策树 决策树是最强大和最流行的算法之一。Python 决策树算法属于监督学习算法的范畴。它适用于连续输出变量和分类输出变量也就是可以处理分类和回归任务。在本文中,我们将在 UCI 上提供平衡秤体重和距离数据库上用 Python 算法实现决策树。 决策树算法,是…

【MySQL探索之旅】MySQL数据表的增删查改(初阶)

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ &…

【Java设计模式】十九、中介者模式

文章目录 1、中介者模式2、案例3、总结 1、中介者模式 如图: 同事类之间关联较多时,整体出现网状结构,耦合度极高。一个对象一变动,好多对象都得改。若变为右边的星形结构,则一个类的变动,只影响自身与中介…