一、源码下载
下面是hive官方源码下载地址,我下载的是hive-3.1.3,那就一起来看下吧
https://dlcdn.apache.org/hive/hive-3.1.3/apache-hive-3.1.3-src.tar.gz
二、上下文
<Hive-源码带你看hive命令背后都做了什么>博客中已经讲到了hive命令执行后会一直循环处理控制台输入的hql,下面就来继续分析下一条hql的执行过程,我们先看官网给的路径,然后再从源码开始捋。
三、官网说明
Design - Apache Hive - Apache Software Foundation
图中还展示了一个典型的查询是如何在系统中流动的,这里我们先看普通的查询
1、UI调用驱动程序的执行接口
2、驱动程序为查询创建会话句柄,并将查询发送给编译器以生成执行计划
3、4、编译器从元存储中获取必要的元数据
5、利用元数据对查询树中的表达式进行类型检查,并根据查询谓词修剪分区。编译器生成计划,计划是阶段的DAG,每个阶段要么是Map/Reduce作业,要么是元数据操作,要么是HDFS上的操作。对于Map/Reduce阶段,计划包含map运算符树(在MapTask上执行的运算符树)和reduce运算符树(用于需要ReduceTask的操作)。
6、6.1、6.2、6.3:执行引擎将这些阶段提交给适当的组件,
四、源码分析
<Hive-源码带你看hive命令背后都做了什么>博客中已经讲到了CliDriver.executeDriver(),我们从其中的processLine()开始捋
1、processLine
/*** 处理一行分号分隔的命令 ** @param line* 要处理的命令 也就是一条hql* @param allowInterrupting* 当为true时,函数将通过中断处理并返回-1来处理SIG_INT(Ctrl+C)** @return 如果一切正常 返回 0 */public int processLine(String line, boolean allowInterrupting) {SignalHandler oldSignal = null;Signal interruptSignal = null;//如果是解析从控制台来的hql,allowInterrupting = trueif (allowInterrupting) {//请记住在我们开始行处理时正在运行的所有线程。处理此行时挂起自定义Ctrl+C处理程序//中断保留现场interruptSignal = new Signal("INT");oldSignal = Signal.handle(interruptSignal, new SignalHandler() {private boolean interruptRequested;@Overridepublic void handle(Signal signal) {boolean initialRequest = !interruptRequested;interruptRequested = true;//在第二个ctrl+c上杀死VMif (!initialRequest) {console.printInfo("Exiting the JVM");System.exit(127);}//中断CLI线程以停止当前语句并返回提示,还确实,下方给出了截图console.printInfo("Interrupting... Be patient, this might take some time.");console.printInfo("Press Ctrl+C again to kill JVM");//首先,终止所有正在运行的MR作业HadoopJobExecHelper.killRunningJobs();TezJobExecHelper.killRunningJobs();HiveInterruptUtils.interrupt();}});}try {int lastRet = 0, ret = 0;//我们不能直接使用“split”函数,因为可能会引用“;” 比如拼接字符串中有 “\\;”//将hql按照字符一个一个处理,遇到 “;” 就会将前面的处理成一个hql 放入 commands List<String> commands = splitSemiColon(line);String command = "";//循环执行用户一次输入的多条hqlfor (String oneCmd : commands) {if (StringUtils.endsWith(oneCmd, "\\")) {command += StringUtils.chop(oneCmd) + ";";continue;} else {command += oneCmd;}if (StringUtils.isBlank(command)) {continue;}//接下来我们看processCmd方法中都做了什么ret = processCmd(command);command = "";lastRet = ret;boolean ignoreErrors = HiveConf.getBoolVar(conf, HiveConf.ConfVars.CLIIGNOREERRORS);if (ret != 0 && !ignoreErrors) {return ret;}}return lastRet;} finally {// Once we are done processing the line, restore the old handlerif (oldSignal != null && interruptSignal != null) {Signal.handle(interruptSignal, oldSignal);}}}
确实如源码中所写,当hql执行时如果按了ctrl+c 会有退出且给出这样的提示
2、processCmd
public int processCmd(String cmd) {CliSessionState ss = (CliSessionState) SessionState.get();ss.setLastCommand(cmd);ss.updateThreadName();//刷新打印流,使其不包括上一个命令的输出ss.err.flush();//从sql语句中剥离注释,跟踪语句何时包含字符串文字。并去掉头尾空白符(只有头尾哟)String cmd_trimmed = HiveStringUtils.removeComments(cmd).trim();//将去掉注释和首尾空白的hql按照 "\\s+" 分割成 tokens 字符串数组 // "\\s+" 等价于 [\f\r\t\v] //比如现在 tokens 就是{“select” ,“*” , “from” ,“ods.test” , "where" "dt='20240309'"}String[] tokens = tokenizeCmd(cmd_trimmed);int ret = 0;//如果用户输入的是 quit 或 exit 直接退出if (cmd_trimmed.toLowerCase().equals("quit") || cmd_trimmed.toLowerCase().equals("exit")) {//如果我们已经走到了这一步——要么前面的命令都成功了,//要么这是命令行。无论哪种情况,这都算作成功运行ss.close();System.exit(0);//如果 hql 第一个字符串是 source} else if (tokens[0].equalsIgnoreCase("source")) {//获取 source 后的hql字符串String cmd_1 = getFirstCmd(cmd_trimmed, tokens[0].length());cmd_1 = new VariableSubstitution(new HiveVariableSource() {@Overridepublic Map<String, String> getHiveVariable() {return SessionState.get().getHiveVariables();}}).substitute(ss.getConf(), cmd_1);File sourceFile = new File(cmd_1);if (! sourceFile.isFile()){console.printError("File: "+ cmd_1 + " is not a file.");ret = 1;} else {try {ret = processFile(cmd_1);} catch (IOException e) {console.printError("Failed processing file "+ cmd_1 +" "+ e.getLocalizedMessage(),stringifyException(e));ret = 1;}}} else if (cmd_trimmed.startsWith("!")) {// 对于shell命令,请使用unstretch命令//可以在hive客户端输入 ! sh your_script.sh 执行你的脚本String shell_cmd = cmd.trim().substring(1);shell_cmd = new VariableSubstitution(new HiveVariableSource() {@Overridepublic Map<String, String> getHiveVariable() {return SessionState.get().getHiveVariables();}}).substitute(ss.getConf(), shell_cmd);// shell_cmd = "/bin/bash -c \'" + shell_cmd + "\'";try {ShellCmdExecutor executor = new ShellCmdExecutor(shell_cmd, ss.out, ss.err);ret = executor.execute();if (ret != 0) {console.printError("Command failed with exit code = " + ret);}} catch (Exception e) {console.printError("Exception raised from Shell command " + e.getLocalizedMessage(),stringifyException(e));ret = 1;}} else { //本地方式try {//获取执行hql的驱动程序,这个我们详细来看下try (CommandProcessor proc = CommandProcessorFactory.get(tokens, (HiveConf) conf)) {if (proc instanceof IDriver) {//让驱动程序使用sql解析器剥离注释ret = processLocalCmd(cmd, proc, ss);} else {//这里是直接使用剥离完注释的sql,我们看这里ret = processLocalCmd(cmd_trimmed, proc, ss);}}} catch (SQLException e) {console.printError("Failed processing command " + tokens[0] + " " + e.getLocalizedMessage(),org.apache.hadoop.util.StringUtils.stringifyException(e));ret = 1;}catch (Exception e) {throw new RuntimeException(e);}}ss.resetThreadName();return ret;}
3、获取执行hql的驱动程序
顺着第2步看这个类CommandProcessorFactory
public static CommandProcessor get(String[] cmd, @Nonnull HiveConf conf) throws SQLException {CommandProcessor result = getForHiveCommand(cmd, conf);if (result != null) {return result;}if (isBlank(cmd[0])) {return null;} else {//如果不是llap开头的hql都会走这//为客户端构建一个驱动程序return DriverFactory.newDriver(conf);}}public static CommandProcessor getForHiveCommand(String[] cmd, HiveConf conf)throws SQLException {return getForHiveCommandInternal(cmd, conf, false);}public static CommandProcessor getForHiveCommandInternal(String[] cmd, HiveConf conf,boolean testOnly)throws SQLException {//这部分是关键,在HiveCommand中,我们看下HiveCommand hiveCommand = HiveCommand.find(cmd, testOnly);if (hiveCommand == null || isBlank(cmd[0])) {return null;}if (conf == null) {conf = new HiveConf();}Set<String> availableCommands = new HashSet<String>();for (String availableCommand : conf.getVar(HiveConf.ConfVars.HIVE_SECURITY_COMMAND_WHITELIST).split(",")) {availableCommands.add(availableCommand.toLowerCase().trim());}if (!availableCommands.contains(cmd[0].trim().toLowerCase())) {throw new SQLException("Insufficient privileges to execute " + cmd[0], "42000");}if (cmd.length > 1 && "reload".equalsIgnoreCase(cmd[0])&& "function".equalsIgnoreCase(cmd[1])) {// special handling for SQL "reload function"return null;}switch (hiveCommand) {case SET:return new SetProcessor();case RESET:return new ResetProcessor();case DFS:SessionState ss = SessionState.get();return new DfsProcessor(ss.getConf());case ADD:return new AddResourceProcessor();case LIST:return new ListResourceProcessor();case LLAP_CLUSTER:return new LlapClusterResourceProcessor();case LLAP_CACHE:return new LlapCacheResourceProcessor();case DELETE:return new DeleteResourceProcessor();case COMPILE:return new CompileProcessor();case RELOAD:return new ReloadProcessor();case CRYPTO:try {return new CryptoProcessor(SessionState.get().getHdfsEncryptionShim(), conf);} catch (HiveException e) {throw new SQLException("Fail to start the command processor due to the exception: ", e);}default:throw new AssertionError("Unknown HiveCommand " + hiveCommand);}}
HiveCommand是非SQL语句,例如设置属性或添加资源。
//可以看出正常情况下只会返回 LLAP_CLUSTER 和 LLAP_CACHE
public static HiveCommand find(String[] command, boolean findOnlyForTesting) {if (null == command){return null;}//解析第一个hql字符串,比如 select 、 delete 、update 、set 等等String cmd = command[0];if (cmd != null) {/转成大写 SELECT 、 DELETE 、UPDATE 、SET 等等cmd = cmd.trim().toUpperCase();if (command.length > 1 && "role".equalsIgnoreCase(command[1])) {//对 "set role r1" 语句的特殊处理return null;} else if(command.length > 1 && "from".equalsIgnoreCase(command[1])) {//对 "delete from <table> where..." 语句特殊处理return null;} else if(command.length > 1 && "set".equalsIgnoreCase(command[0]) && "autocommit".equalsIgnoreCase(command[1])) {return null;//不希望set autocommit true|false与set hive.foo.bar混合......} else if (command.length > 1 && "llap".equalsIgnoreCase(command[0])) {return getLlapSubCommand(command);} else if (COMMANDS.contains(cmd)) {HiveCommand hiveCommand = HiveCommand.valueOf(cmd);if (findOnlyForTesting == hiveCommand.isOnlyForTesting()) {return hiveCommand;}return null;}}return null;}private static HiveCommand getLlapSubCommand(final String[] command) {if ("cluster".equalsIgnoreCase(command[1])) {return LLAP_CLUSTER;} else if ("cache".equalsIgnoreCase(command[1])) {return LLAP_CACHE;} else {return null;}}
如果不是llap开头的hql都会走这 return DriverFactory.newDriver(conf);
public static IDriver newDriver(QueryState queryState, String userName, QueryInfo queryInfo) {//获取配置中 hive.query.reexecution.enabled 的属性值 默认 true//解释:启用查询重新执行boolean enabled = queryState.getConf().getBoolVar(ConfVars.HIVE_QUERY_REEXECUTION_ENABLED);if (!enabled) {//如果没有开启则返回Driverreturn new Driver(queryState, userName, queryInfo);}//获取配置中 hive.query.reexecution.strategies 的属性值 默认值为 overlay,reoptimize//解释:可以使用逗号分隔的插件列表://overlay:hiveconf子树“reexec.overlay”用作执行出错时的覆盖//reoptimize:在执行期间收集运算符统计信息,并在失败后重新编译查询String strategies = queryState.getConf().getVar(ConfVars.HIVE_QUERY_REEXECUTION_STRATEGIES);strategies = Strings.nullToEmpty(strategies).trim().toLowerCase();ArrayList<IReExecutionPlugin> plugins = new ArrayList<>();for (String string : strategies.split(",")) {if (string.trim().isEmpty()) {continue;}plugins.add(buildReExecPlugin(string));}//默认返回ReExecDriver//覆盖IDriver接口,处理查询的重新执行;并向底层的重新执行插件提出了明确的问题。return new ReExecDriver(queryState, userName, queryInfo, plugins);}
4、processLocalCmd
int processLocalCmd(String cmd, CommandProcessor proc, CliSessionState ss) {//获取hive-site.xml中的hive.cli.print.escape.crlf属性值,默认为false//解释:是否将行输出中的回车和换行打印为转义符\r\nboolean escapeCRLF = HiveConf.getBoolVar(conf, HiveConf.ConfVars.HIVE_CLI_PRINT_ESCAPE_CRLF);int ret = 0;if (proc != null) {//从第3步已经知晓,默认会走这一步if (proc instanceof IDriver) {//强制先转成IDriver IDriver qp = (IDriver) proc;PrintStream out = ss.out;long start = System.currentTimeMillis();if (ss.getIsVerbose()) {out.println(cmd);}//这里调用的时IDriver.run() 我们详细看下ret = qp.run(cmd).getResponseCode();if (ret != 0) {qp.close();return ret;}//查询已运行捕获时间long end = System.currentTimeMillis();double timeTaken = (end - start) / 1000.0;ArrayList<String> res = new ArrayList<String>();printHeader(qp, out);//打印结果int counter = 0;try {if (out instanceof FetchConverter) {((FetchConverter) out).fetchStarted();}while (qp.getResults(res)) {for (String r : res) {if (escapeCRLF) {r = EscapeCRLFHelper.escapeCRLF(r);}out.println(r);}counter += res.size();res.clear();if (out.checkError()) {break;}}} catch (IOException e) {console.printError("Failed with exception " + e.getClass().getName() + ":" + e.getMessage(),"\n" + org.apache.hadoop.util.StringUtils.stringifyException(e));ret = 1;}qp.close();if (out instanceof FetchConverter) {((FetchConverter) out).fetchFinished();}console.printInfo("Time taken: " + timeTaken + " seconds" + (counter == 0 ? "" : ", Fetched: " + counter + " row(s)"));} else {String firstToken = tokenizeCmd(cmd.trim())[0];String cmd_1 = getFirstCmd(cmd.trim(), firstToken.length());if (ss.getIsVerbose()) {ss.out.println(firstToken + " " + cmd_1);}CommandProcessorResponse res = proc.run(cmd_1);if (res.getResponseCode() != 0) {ss.out.println("Query returned non-zero code: " + res.getResponseCode() + ", cause: " + res.getErrorMessage());}if (res.getConsoleMessages() != null) {for (String consoleMsg : res.getConsoleMessages()) {console.printInfo(consoleMsg);}}ret = res.getResponseCode();}}return ret;}
5、ReExecDriver
public CommandProcessorResponse run(String command) {CommandProcessorResponse r0 = compileAndRespond(command);if (r0.getResponseCode() != 0) {return r0;}return run();}public CommandProcessorResponse compileAndRespond(String statement) {currentQuery = statement;//coreDriver就是Driver 我们去Driver详细看下这个逻辑return coreDriver.compileAndRespond(statement);}public CommandProcessorResponse run() {executionIndex = 0;int maxExecutuions = 1 + coreDriver.getConf().getIntVar(ConfVars.HIVE_QUERY_MAX_REEXECUTION_COUNT);while (true) {executionIndex++;for (IReExecutionPlugin p : plugins) {p.beforeExecute(executionIndex, explainReOptimization);}coreDriver.getContext().setExecutionIndex(executionIndex);LOG.info("Execution #{} of query", executionIndex);CommandProcessorResponse cpr = coreDriver.run();PlanMapper oldPlanMapper = coreDriver.getPlanMapper();afterExecute(oldPlanMapper, cpr.getResponseCode() == 0);boolean shouldReExecute = explainReOptimization && executionIndex==1;shouldReExecute |= cpr.getResponseCode() != 0 && shouldReExecute();if (executionIndex >= maxExecutuions || !shouldReExecute) {return cpr;}LOG.info("Preparing to re-execute query");prepareToReExecute();CommandProcessorResponse compile_resp = coreDriver.compileAndRespond(currentQuery);if (compile_resp.failed()) {LOG.error("Recompilation of the query failed; this is unexpected.");// FIXME: somehow place pointers that re-execution compilation have failed; the query have been successfully compiled before?return compile_resp;}PlanMapper newPlanMapper = coreDriver.getPlanMapper();if (!explainReOptimization && !shouldReExecuteAfterCompile(oldPlanMapper, newPlanMapper)) {LOG.info("re-running the query would probably not yield better results; returning with last error");// FIXME: retain old error; or create a new one?return cpr;}}}
5.1、Driver
public CommandProcessorResponse compileAndRespond(String command, boolean cleanupTxnList) {try {compileInternal(command, false);return createProcessorResponse(0);} catch (CommandProcessorResponse e) {return e;} finally {if (cleanupTxnList) {//使用此命令编译的查询可能会生成有效的txn列表,因此我们需要重置它conf.unset(ValidTxnList.VALID_TXNS_KEY);}}}private void compileInternal(String command, boolean deferClose) throws CommandProcessorResponse {//......省略...... try {//deferClose表示进程中断时是否应推迟关闭/销毁,//如果在另一个方法(如runInternal)内调用编译,//则应将其设置为true,runInternal将关闭推迟到该方法中调用的。//我们详细看下compile(command, true, deferClose);} catch (CommandProcessorResponse cpr) {//......省略...... } finally {compileLock.unlock();}//......省略...... }private void compile(String command, boolean resetTaskIds, boolean deferClose) throws CommandProcessorResponse {//......省略...... command = new VariableSubstitution(new HiveVariableSource() {@Overridepublic Map<String, String> getHiveVariable() {return SessionState.get().getHiveVariables();}}).substitute(conf, command);String queryStr = command;try {//应编辑命令以避免记录敏感数据queryStr = HookUtils.redactLogString(conf, command);} catch (Exception e) {LOG.warn("WARNING! Query command could not be redacted." + e);}checkInterrupted("at beginning of compilation.", null, null);if (ctx != null && ctx.getExplainAnalyze() != AnalyzeState.RUNNING) {//在编译新查询之前关闭现有的ctx-etc,但不要破坏驱动程序closeInProcess(false);}if (resetTaskIds) {TaskFactory.resetId();}LockedDriverState.setLockedDriverState(lDrvState);//获取查询id 正在执行的查询的ID(每个会话可能有多个String queryId = queryState.getQueryId();if (ctx != null) {setTriggerContext(queryId);}//保存一些信息以供webUI在计划释放后使用this.queryDisplay.setQueryStr(queryStr);this.queryDisplay.setQueryId(queryId);//正在编译这条 hql LOG.info("Compiling command(queryId=" + queryId + "): " + queryStr);conf.setQueryString(queryStr);//FIXME:副作用将把最后一个查询集留在会话级别if (SessionState.get() != null) {SessionState.get().getConf().setQueryString(queryStr);SessionState.get().setupQueryCurrentTimestamp();}//查询编译过程中是否发生任何错误。用于查询生存期挂钩。boolean compileError = false;boolean parseError = false;try {//初始化事务管理器。这必须在调用解析(analyze)之前完成。if (initTxnMgr != null) {queryTxnMgr = initTxnMgr;} else {queryTxnMgr = SessionState.get().initTxnMgr(conf);}if (queryTxnMgr instanceof Configurable) {((Configurable) queryTxnMgr).setConf(conf);}queryState.setTxnManager(queryTxnMgr);//如果用户Ctrl-C两次杀死Hive CLI JVM,如果多次调用compile,//我们希望释放锁,请清除旧的shutdownhookShutdownHookManager.removeShutdownHook(shutdownRunner);final HiveTxnManager txnMgr = queryTxnMgr;shutdownRunner = new Runnable() {@Overridepublic void run() {try {releaseLocksAndCommitOrRollback(false, txnMgr);} catch (LockException e) {LOG.warn("Exception when releasing locks in ShutdownHook for Driver: " +e.getMessage());}}};ShutdownHookManager.addShutdownHook(shutdownRunner, SHUTDOWN_HOOK_PRIORITY);//在解析和分析查询之前checkInterrupted("before parsing and analysing the query", null, null);if (ctx == null) {ctx = new Context(conf);setTriggerContext(queryId);}//设置此查询的事务管理器ctx.setHiveTxnManager(queryTxnMgr);ctx.setStatsSource(statsSource);//设置hqlctx.setCmd(command);//退出时清理HDFSctx.setHDFSCleanup(true);perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.PARSE);//在查询进入解析阶段之前调用hookRunner.runBeforeParseHook(command);ASTNode tree;try {//解析hql 这里先不展开讲,我们会单独拿一篇博客来研究tree = ParseUtils.parse(command, ctx); } catch (ParseException e) {parseError = true;throw e;} finally {hookRunner.runAfterParseHook(command, parseError);}perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.PARSE);hookRunner.runBeforeCompileHook(command);//清除CurrentFunctionsInUse 设置,以捕获SemanticAnalyzer发现正在使用的新函数集SessionState.get().getCurrentFunctionsInUse().clear();perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.ANALYZE);//刷新元存储缓存。这确保了我们不会从在同一线程中运行的先前查询中拾取对象。//这必须在我们获得语义分析器之后(即与元存储建立连接时),//但在我们进行分析之前完成,因为此时我们需要访问对象。Hive.get().getMSC().flushCache();backupContext = new Context(ctx);boolean executeHooks = hookRunner.hasPreAnalyzeHooks();//Hive为HiveSemanticAnalyzerHook的实现提供的上下文信息HiveSemanticAnalyzerHookContext hookCtx = new HiveSemanticAnalyzerHookContextImpl();if (executeHooks) {hookCtx.setConf(conf);hookCtx.setUserName(userName);hookCtx.setIpAddress(SessionState.get().getUserIpAddress());hookCtx.setCommand(command);hookCtx.setHiveOperation(queryState.getHiveOperation());//在Hive对语句执行自己的语义分析之前调用。实现可以检查语句AST,//并通过抛出SemanticException来阻止其执行。它是可选地,//它也可以扩充/重写AST,但必须生成一个与Hive自己的解析器直接返回的表单等效的表单。//返回替换后的AST(通常与原始AST相同,除非必须替换整个树;不得为null)tree = hookRunner.runPreAnalyzeHooks(hookCtx, tree);}//进行语义分析和计划生成//这里会根据 tree的type获取不同的优化引擎,默认是CalcitePlannerBaseSemanticAnalyzer sem = SemanticAnalyzerFactory.get(queryState, tree);if (!retrial) {openTransaction();generateValidTxnList();}//对hql转化后的tree进行解析,比如:语义分析 ,后面专门用一篇博客来研究sem.analyze(tree, ctx);if (executeHooks) {hookCtx.update(sem);hookRunner.runPostAnalyzeHooks(hookCtx, sem.getAllRootTasks());}/语义分析完成LOG.info("Semantic Analysis Completed (retrial = {})", retrial);//检索有关查询的缓存使用情况的信息。if (conf.getBoolVar(HiveConf.ConfVars.HIVE_QUERY_RESULTS_CACHE_ENABLED)) {cacheUsage = sem.getCacheUsage();}//验证计划sem.validate();perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.ANALYZE);//分析查询后checkInterrupted("after analyzing query.", null, null);//获取输出模式schema = getSchema(sem, conf);//制作查询计划plan = new QueryPlan(queryStr, sem, perfLogger.getStartTime(PerfLogger.DRIVER_RUN), queryId,queryState.getHiveOperation(), schema);//设置mapreduce工作流引擎id和nameconf.set("mapreduce.workflow.id", "hive_" + queryId);conf.set("mapreduce.workflow.name", queryStr);//在此处初始化FetchTaskif (plan.getFetchTask() != null) {plan.getFetchTask().initialize(queryState, plan, null, ctx.getOpContext());}//进行授权检查if (!sem.skipAuthorization() &&HiveConf.getBoolVar(conf, HiveConf.ConfVars.HIVE_AUTHORIZATION_ENABLED)) {try {perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.DO_AUTHORIZATION);//具体会做以下操作// 1、连接hive的元数据// 2、设置输入输出// 3、获取表和列的映射// 4、添加正在使用的永久UDF// 5、解析hql操作是对数据库、表、还是查询或者导入// 6、如果是分区表,还要检查分区权限// 7、通过表扫描运算符检查列授权// 8、表授权检查doAuthorization(queryState.getHiveOperation(), sem, command);} catch (AuthorizationException authExp) {console.printError("Authorization failed:" + authExp.getMessage()+ ". Use SHOW GRANT to get more details.");errorMessage = authExp.getMessage();SQLState = "42000";throw createProcessorResponse(403);} finally {perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.DO_AUTHORIZATION);}}if (conf.getBoolVar(ConfVars.HIVE_LOG_EXPLAIN_OUTPUT)) {String explainOutput = getExplainOutput(sem, plan, tree);if (explainOutput != null) {LOG.info("EXPLAIN output for queryid " + queryId + " : "+ explainOutput);if (conf.isWebUiQueryInfoCacheEnabled()) {//设置执行计划queryDisplay.setExplainPlan(explainOutput);}}}} catch (CommandProcessorResponse cpr) {throw cpr;} catch (Exception e) {checkInterrupted("during query compilation: " + e.getMessage(), null, null);compileError = true;ErrorMsg error = ErrorMsg.getErrorMsg(e.getMessage());errorMessage = "FAILED: " + e.getClass().getSimpleName();if (error != ErrorMsg.GENERIC_ERROR) {errorMessage += " [Error " + error.getErrorCode() + "]:";}// HIVE-4889if ((e instanceof IllegalArgumentException) && e.getMessage() == null && e.getCause() != null) {errorMessage += " " + e.getCause().getMessage();} else {errorMessage += " " + e.getMessage();}if (error == ErrorMsg.TXNMGR_NOT_ACID) {errorMessage += ". Failed command: " + queryStr;}SQLState = error.getSQLState();downstreamError = e;console.printError(errorMessage, "\n"+ org.apache.hadoop.util.StringUtils.stringifyException(e));throw createProcessorResponse(error.getErrorCode());} finally {// 触发编译后挂钩。请注意,如果此处编译失败,则执行前/执行后挂钩将永远不会执行。if (!parseError) {try {hookRunner.runAfterCompilationHook(command, compileError);} catch (Exception e) {LOG.warn("Failed when invoking query after-compilation hook.", e);}}double duration = perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.COMPILE)/1000.00;ImmutableMap<String, Long> compileHMSTimings = dumpMetaCallTimingWithoutEx("compilation");queryDisplay.setHmsTimings(QueryDisplay.Phase.COMPILATION, compileHMSTimings);boolean isInterrupted = lDrvState.isAborted();if (isInterrupted && !deferClose) {closeInProcess(true);}lDrvState.stateLock.lock();try {if (isInterrupted) {lDrvState.driverState = deferClose ? DriverState.EXECUTING : DriverState.ERROR;} else {lDrvState.driverState = compileError ? DriverState.ERROR : DriverState.COMPILED;}} finally {lDrvState.stateLock.unlock();}if (isInterrupted) {LOG.info("Compiling command(queryId=" + queryId + ") has been interrupted after " + duration + " seconds");} else {LOG.info("Completed compiling command(queryId=" + queryId + "); Time taken: " + duration + " seconds");}}}
5.2、ReExecDriver自身执行
public CommandProcessorResponse run() {executionIndex = 0;//获取配置文件中的 hive.query.reexecution.max.count 属性值,默认为 1//解释:单个查询的最大重新执行次数int maxExecutuions = 1 + coreDriver.getConf().getIntVar(ConfVars.HIVE_QUERY_MAX_REEXECUTION_COUNT);while (true) {executionIndex++;//循环执行重新执行逻辑for (IReExecutionPlugin p : plugins) {//在执行查询之前调用p.beforeExecute(executionIndex, explainReOptimization);}coreDriver.getContext().setExecutionIndex(executionIndex);LOG.info("Execution #{} of query", executionIndex);//还是会调用Driver ,但是和5.1调用的不一样,我们详细看看CommandProcessorResponse cpr = coreDriver.run();PlanMapper oldPlanMapper = coreDriver.getPlanMapper();afterExecute(oldPlanMapper, cpr.getResponseCode() == 0);boolean shouldReExecute = explainReOptimization && executionIndex==1;shouldReExecute |= cpr.getResponseCode() != 0 && shouldReExecute();if (executionIndex >= maxExecutuions || !shouldReExecute) {return cpr;}//正在准备重新执行查询LOG.info("Preparing to re-execute query");prepareToReExecute();CommandProcessorResponse compile_resp = coreDriver.compileAndRespond(currentQuery);if (compile_resp.failed()) {LOG.error("Recompilation of the query failed; this is unexpected.");return compile_resp;}PlanMapper newPlanMapper = coreDriver.getPlanMapper();if (!explainReOptimization && !shouldReExecuteAfterCompile(oldPlanMapper, newPlanMapper)) {//重新运行查询可能不会产生更好的结果;返回最后一个错误LOG.info("re-running the query would probably not yield better results; returning with last error");return cpr;}}}
分析调用Driver的逻辑(和5.1不同)
public CommandProcessorResponse run(String command, boolean alreadyCompiled) {try {runInternal(command, alreadyCompiled);return createProcessorResponse(0);} catch (CommandProcessorResponse cpr) {//......省略......}}private void runInternal(String command, boolean alreadyCompiled) throws CommandProcessorResponse {errorMessage = null;SQLState = null;downstreamError = null;LockedDriverState.setLockedDriverState(lDrvState);lDrvState.stateLock.lock();try {if (alreadyCompiled) {if (lDrvState.driverState == DriverState.COMPILED) {//如果引擎是编译状态,现在修改成执行状态lDrvState.driverState = DriverState.EXECUTING;} else {//失败:预编译的查询已被取消或关闭。errorMessage = "FAILED: Precompiled query has been cancelled or closed.";console.printError(errorMessage);throw createProcessorResponse(12);}} else {lDrvState.driverState = DriverState.COMPILING;}} finally {lDrvState.stateLock.unlock();}//一个标志,通过跟踪方法是否因错误而返回,帮助在finally块中设置正确的驱动器状态。boolean isFinishedWithError = true;try {//Hive向HiveDriverRunHook的实现提供的上下文信息HiveDriverRunHookContext hookContext = new HiveDriverRunHookContextImpl(conf,alreadyCompiled ? ctx.getCmd() : command);//获取所有驱动程序运行挂钩并预执行它们try {hookRunner.runPreDriverHooks(hookContext);} catch (Exception e) {errorMessage = "FAILED: Hive Internal Error: " + Utilities.getNameMessage(e);SQLState = ErrorMsg.findSQLState(e.getMessage());downstreamError = e;console.printError(errorMessage + "\n"+ org.apache.hadoop.util.StringUtils.stringifyException(e));throw createProcessorResponse(12);}PerfLogger perfLogger = null;//如果还没有编译if (!alreadyCompiled) {//内部编译将自动重置性能记录器compileInternal(command, true);//然后我们继续使用这个性能记录器perfLogger = SessionState.getPerfLogger();} else {//重用现有的性能记录器perfLogger = SessionState.getPerfLogger();//由于我们正在重用已编译的计划,因此需要更新其当前运行的开始时间plan.setQueryStartTime(perfLogger.getStartTime(PerfLogger.DRIVER_RUN));}//我们在这里为cxt设置txn管理器的原因是,每个查询都有自己的ctx对象。//txn-mgr在同一个Driver实例中共享,该实例可以运行多个查询。ctx.setHiveTxnManager(queryTxnMgr);checkInterrupted("at acquiring the lock.", null, null);lockAndRespond();//......省略......try {//执行hql 我们后面专门用一篇博客来研究execute();} catch (CommandProcessorResponse cpr) {rollback(cpr);throw cpr;}//如果needRequireLock为false,则此处的发布将不执行任何操作,因为没有锁try {//由于set autocommit启动了一个隐式txn,请关闭它 if(queryTxnMgr.isImplicitTransactionOpen() || plan.getOperation() == HiveOperation.COMMIT) {releaseLocksAndCommitOrRollback(true);}else if(plan.getOperation() == HiveOperation.ROLLBACK) {releaseLocksAndCommitOrRollback(false);}else {//txn(如果有一个已启动)未完成}} catch (LockException e) {throw handleHiveException(e, 12);}perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.DRIVER_RUN);queryDisplay.setPerfLogStarts(QueryDisplay.Phase.EXECUTION, perfLogger.getStartTimes());queryDisplay.setPerfLogEnds(QueryDisplay.Phase.EXECUTION, perfLogger.getEndTimes());//获取所有驱动程序运行的钩子并执行它们。try {hookRunner.runPostDriverHooks(hookContext);} catch (Exception e) {}isFinishedWithError = false;} finally {if (lDrvState.isAborted()) {closeInProcess(true);} else {//正常只释放相关资源ctx、driverContextreleaseResources();}lDrvState.stateLock.lock();try {lDrvState.driverState = isFinishedWithError ? DriverState.ERROR : DriverState.EXECUTED;} finally {lDrvState.stateLock.unlock();}}}
五、总结
1、用户在hive客户端输入hql
2、进行中断操作,终止正在运行的mr作业
3、解析用户在hive客户端输入的hql(将hql按照字符一个一个处理,遇到 ";" 就会将前面的处理成一个hql 放入列表中)
4、循环执行hql列表中的每一条hql
5、从sql语句中剥离注释,并去掉头尾空白符 并按照 '\\s+' 分割成hql数组
6、判断hql 是 正常的sql(只分析这个) 还是 source 、quit 、 exit 还是 !
7、获取执行hql的驱动程序(对hql数组的第一个字符串进行转大写操作并匹配对应的驱动程序,默认会返回ReExecDriver)
8、编译hql
9、解析hql
10、语义分析和计划生成
11、校验计划
12、获取输出模式并制作查询计划,并设置mapreduce工作流引擎参数
13、授权检查
13.1、连接hive的元数据
13.2、设置输入输出
13.3、获取表和列的映射
13.4、添加正在使用的永久UDF
13.5、通过表扫描运算符检查列授权
13.6、表授权检查
14、设置执行计划并执行