【Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令】

Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令

1、名词解释

1.1 CUDA

CUDA(Compute Unified Device Architecture)是由NVIDIA开发的用于并行计算的平台和编程模型。CUDA旨在利用NVIDIA GPU(图形处理单元)的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。

  • GPU并行计算
    • CUDA使GPU能够执行并行计算任务,从而大幅提高了计算性能。GPU由许多小型处理单元组成,每个处理单元都能够执行多个线程,这意味着GPU可以同时处理大量的计算任务。
  • NVIDIA GPU支持
    • CUDA仅适用于NVIDIA GPU
    • 不同版本的CUDA通常与特定型号的NVIDIA GPU兼容,因此需要确保你的GPU支持所选版本的CUDA。
  • CUDA工具和库
    • NVIDIA提供了一套用于CUDA开发的工具和库,包括CUDA Toolkit、cuDNN(CUDA深度神经网络库)、cuBLAS(CUDA基础线性代数库)等。这些工具和库简化了CUDA应用程序的开发和优化过程。

1.2 Cudnn

  • cuDNN(CUDA Deep Neural Network Library)
    • 由NVIDIA开发的用于深度学习的加速库。
    • cuDNN旨在优化神经网络的前向传播和反向传播过程,以利用NVIDIA GPU的并行计算能力,从而加速深度学习模型的训练和推理。
  • 深度学习加速
    • cuDNN是专门为深度学习任务而设计的,旨在加速神经网络的训练和推理。它提供了一系列高度优化的算法和函数,用于执行神经网络层的前向传播、反向传播和权重更新。
  • GPU加速
    • cuDNN充分利用NVIDIA GPU的并行计算能力,以高效地执行深度学习操作。这使得训练深度神经网络更快速,尤其是对于大型模型和大规模数据集。
  • 版本兼容性
    • cuDNN的不同版本与NVIDIA GPU架构和深度学习框架的版本兼容。因此,为了获得最佳性能,你需要选择适用于你的GPU型号和深度学习框架版本的cuDNN版本。cuDNN是免费的,可以在NVIDIA的官方网站上下载和使用。

1.3 PyTorch

  • PyTorch 是一个开源的深度学习框架,由Facebook的人工智能研究团队开发和维护。它是一个非常流行的深度学习框架,用于构建和训练神经网络模型。
  • 动态计算图
    • PyTorch 采用动态计算图(Dynamic Computational Graph)的方式来定义和执行神经网络。这意味着你可以像编写常规Python代码一样编写神经网络,同时保留了计算图的优势,使模型的构建和调试更加直观和灵活。
    • PyTorch 提供了丰富的张量操作,以及各种优化工具和模块,可以轻松构建各种类型的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。它还支持自定义神经网络层和损失函数,允许你创建高度定制的模型。
  • GPU加速
    • PyTorch天然支持GPU加速,你可以在GPU上训练和执行神经网络,大幅提高了计算性能。PyTorch的GPU张量操作与CPU张量操作非常相似,使得将计算从CPU迁移到GPU变得相对容易。

2、三者关系

  • CUDA、cuDNN 和 PyTorch 是三个不同但相关的组件,它们之间存在一些依赖关系,特别是在使用 PyTorch 进行深度学习开发时。
  • CUDA(Compute Unified Device Architecture)
    • 「CUDA是GPU并行计算平台」:CUDA 是由 NVIDIA 开发的用于并行计算的平台和编程模型。它允许开发人员利用 NVIDIA GPU 的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。
    • 「PyTorch依赖CUDA」:PyTorch 使用 CUDA 来加速神经网络的训练和推理。在 PyTorch 中,张量(Tensor)可以在 CPU 或 GPU 上进行计算。如果你想在 GPU 上训练神经网络,你需要确保 CUDA 已经正确安装并配置。
    • 「版本兼容性」:不同版本的 PyTorch 可能需要特定版本的 CUDA。你需要根据所使用的 PyTorch 版本来选择合适的 CUDA 版本,以确保兼容性。
  • cuDNN(CUDA Deep Neural Network Library)
    • 「cuDNN用于深度学习加速」:cuDNN 是 NVIDIA 开发的专门用于深度学习的加速库。它提供了高度优化的卷积和其他深度神经网络层的操作,以提高深度学习模型的性能。
    • 「PyTorch依赖cuDNN」:PyTorch 使用 cuDNN 来执行深度学习操作,尤其是在卷积神经网络(CNN)中。cuDNN 提供了高性能的卷积操作,使 PyTorch 能够在 GPU 上高效地进行前向传播和反向传播。
    • 「版本兼容性」:不同版本的 PyTorch 需要特定版本的 cuDNN。你需要确保所使用的 cuDNN 版本与 PyTorch 版本兼容。
  • 「PyTorch」
    • 「PyTorch是深度学习框架」:PyTorch 是一个开源的深度学习框架,用于构建、训练和部署神经网络模型。它提供了张量操作、自动求导、优化器、损失函数等工具,使深度学习任务更加便捷。
    • 「PyTorch依赖CUDA和cuDNN」:PyTorch 可以在 CPU 或 GPU 上运行,但为了获得最佳性能,特别是在大规模深度学习任务中,你通常会将 PyTorch 配置为在 GPU 上运行。这就需要确保 CUDA 和 cuDNN 已正确安装和配置。

3、Pytorch 、torchvision、python版本对应图

在这里插入图片描述

4、CUDA与Driver Version对应关系表

在这里插入图片描述

5、如何查询服务器CUDA版本、Pytorch版本

5.1 查询服务器CUDA版本

  • 在terminal中输入:nvidia-smi 即可,如下图👇所示 在这里插入图片描述

5.2 查询Pytorch版本

  • 在terminal中输入以下指令即可,如下图👇所示
  • print(torch.__version__) 在这里插入图片描述

6、安装Pytorch、torchvision的指令

pip install torch==1.13.0 torchvision==1.4.0 -i https://pypi.douban.com/simple

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/732444.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用R语言进行聚类分析

一、样本数据描述 城镇居民人均消费支出水平包括食品、衣着、居住、生活用品及服务、通信、文教娱乐、医疗保健和其他用品及服务支出这八项指标来描述。表中列出了2016年我国分地区的城镇居民的人均消费支出的原始数据,数据来源于2017年的《中国统计年鉴》&#xf…

Publii和GitHub:搭建个人网站的完美组合

在数字时代,拥有一个个人网站已经非常普遍了,但是,很多人因为技术难题而望而却步。现在,有了Publii,这一切都将变得简单。Publii是一个静态网站生成器,它允许你在本地计算机上创建和管理内容,然…

ARM中汇编语言的学习(加法、乘法、除法、左移、右移、按位与等多种命令操作实例以及ARM的 N、Z、C、V 标志位的解释)

汇编概述 汇编需要学习的大致框架如下: 汇编中的符号 1.指令;能够北嘁肷梢惶?2bit机器码,并且能够被cpui识别和执行 2.伪指令:本身不是指令,编译器可以将其替换成若干条指令 3.伪操作:不会生成指令…

如何修复advapi32.dll丢失无法启动程序的问题

如果你在运行Windows程序时遇到了“advapi32.dll丢失无法启动程序”的错误消息,那么这意味着你的计算机缺少这个DLL文件。在本文中,我们将提供一些解决方案,帮助你解决这个问题并恢复计算机的正常运行。 一.advapi32.dll丢失电脑的提示 关于…

软件项目试运行方案

一、 试运行目的 (一) 系统功能、性能与稳定性考核 (二) 系统在各种环境和工况条件下的工作稳定性和可靠性 (三) 检验系统实际应用效果和应用功能的完善 (四) 健全系统运行管理体制&…

宏碁掠夺者:4K144Hz显示器,让你爽翻天

大家好,我又来了。 买了PS5后,我发现这样的主机放在客厅里可玩性不太高(我没机会玩)。 毕竟家里还有今年要上小学的孩子。 每天回家打卡交作业都让我发疯。 客厅里放一台PS5无疑是每天对孩子最大的影响(也划破了我的心…

vue 下载的插件从哪里上传?npm发布插件详细记录

文章参考: 参考文章一: 封装vue插件并发布到npm详细步骤_vue-cli 封装插件-CSDN博客 参考文章二: npm发布vue插件步骤、组件、package、adduser、publish、getElementsByClassName、important、export、default、target、dest_export default…

智能驾驶规划控制理论学习08-自动驾驶控制模块(轨迹跟踪)

目录 一、基于几何的轨迹跟踪方法 1、基本思想 2、纯追踪 3、Stanly Method 二、PID控制器 三、LQR(Linear Quadratic Regulator) 1、基本思想 2、LQR解法 3、案例学习 基于LQR的路径跟踪 基于LQR的速度跟踪 4、MPC(Mode…

day59 线程

创建线程的第二种方式 实现接口Runnable 重写run方法 创建线程的第三种方式 java.util.concurrent下的Callable重写call()方法 java.util.concurrent.FutureTask 创建线程类对象 获取返回值 线程的四种生命周期 线程的优先级1-10 default为5,优先级越高&#xff0c…

基于梯度统计学的渐变型亮缝识别算法

作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 一、场景痛点 在图像处理相关的实际工程中,会出现各式各样的现实复杂问题,有的是因为机械设计导致&#x…

【洛谷 P8668】[蓝桥杯 2018 省 B] 螺旋折线 题解(数学+平面几何)

[蓝桥杯 2018 省 B] 螺旋折线 题目描述 如图所示的螺旋折线经过平面上所有整点恰好一次。 对于整点 ( X , Y ) (X, Y) (X,Y),我们定义它到原点的距离 dis ( X , Y ) \text{dis}(X, Y) dis(X,Y) 是从原点到 ( X , Y ) (X, Y) (X,Y) 的螺旋折线段的长度。 例如 …

蓝桥杯练习系统(算法训练)ALGO-981 过河马

资源限制 内存限制:256.0MB C/C时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s 问题描述 在那个过河卒逃过了马的控制以超级超级多的走法走到了终点之后,这匹马表示它不开心了……   于是&#xff0c…

Java教程:RabbitMq讲解与SpringBoot项目如何对接RabbitMq实现生产者与消费者

在往期文章中,我们讲了如何在Windows与Linux环境下安装RabbitMq服务,并访问Web管理端。 有很多同学其实并不知道RabbitMq是用来干嘛的,它起到一个什么作用,并且如何在常见的SpringBoot项目中集成mq并实现消息收发,本章…

Nginx实现高并发

注:文章是4年前在自己网站上写的,迁移过来了。现在看我之前写的这篇文章,描述得不是特别详细,但描述了Nginx的整体架构思想。如果对Nginx玩得透得或者想了解深入的,可以在网上找找其他的文章。 ......................…

day17_订单(结算,提交订单,支付页,立即购买,我的订单)

文章目录 订单模块1 结算1.1 需求说明1.2 获取用户地址1.2.1 UserAddress1.2.2 UserAddressController1.2.3 UserAddressService1.2.4 UserAddressMapper1.2.5 UserAddressMapper.xml 1.3 获取购物项数据1.3.1 CartController1.3.2 CartService1.3.3 openFeign接口定义 1.4 环境…

NIFI从Oracle11G同步数据到Mysql_亲测可用_解决数据重复_数据跟源表不一致的问题---大数据之Nifi工作笔记0065

首先来看一下整体的流程: 可以看到了用到了上面的这些处理器,然后我们主要看看,这里之前 同步的时候,总是出现重复的数据,奇怪. 比如源表中只有166条数据,但是同步过去以后变成了11万条数据了. ${db.table.name:equals(table1):or(${db.table.name:equals(table2)})} 可以看…

【精选好刊】JCR2区SCI仅17天上线见刊,最后10篇版面!

录用案例 JCR2区地质环境类SCI&EI (进展顺) 【期刊简介】IF:3.0-4.0,JCR2区,中科院3/4区; 【检索情况】SCI&EI双检; 【征稿领域】地球观测、环境监测和管理相关或结合研究均可; 【案例分享】重…

前端面试练习24.3.8

防抖和节流 防抖(Debouncing): 防抖是指在短时间内连续触发同一事件时,只执行最后一次触发的事件处理函数。 在实际应用中,常常用于处理用户输入的搜索框或者滚动事件。例如,当用户连续输入搜索关键词时&am…

业务代码中如何使用装饰器模式?

装饰器模式(Decorator Pattern)介绍 装饰器模式(Decorator Pattern)是一种结构型设计模式,我们可以动态地给一个对象添加额外的职责。而不是通过继承增加子类的方式来扩展对象的功能,装饰器模式使用组合的…

[N1CTF 2018]eating_cms 不会编程的崽

题倒是不难,但是实在是恶心到了。 上来就是登录框,页面源代码也没什么特别的。寻思抓包看一下,数据包直接返回了sql查询语句。到以为是sql注入的题目,直到我看到了单引号被转义。。。挺抽象,似乎sql语句过滤很严格。又…