Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令
1、名词解释
1.1 CUDA
CUDA(Compute Unified Device Architecture)是由NVIDIA开发的用于并行计算的平台和编程模型。CUDA旨在利用NVIDIA GPU(图形处理单元)的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。
- GPU并行计算
- CUDA使GPU能够执行并行计算任务,从而大幅提高了计算性能。GPU由许多小型处理单元组成,每个处理单元都能够执行多个线程,这意味着GPU可以同时处理大量的计算任务。
- NVIDIA GPU支持
- CUDA仅适用于NVIDIA GPU
- 不同版本的CUDA通常与特定型号的NVIDIA GPU兼容,因此需要确保你的GPU支持所选版本的CUDA。
- CUDA工具和库
- NVIDIA提供了一套用于CUDA开发的工具和库,包括CUDA Toolkit、cuDNN(CUDA深度神经网络库)、cuBLAS(CUDA基础线性代数库)等。这些工具和库简化了CUDA应用程序的开发和优化过程。
1.2 Cudnn
- cuDNN(CUDA Deep Neural Network Library)
- 由NVIDIA开发的用于深度学习的加速库。
- cuDNN旨在优化神经网络的前向传播和反向传播过程,以利用NVIDIA GPU的并行计算能力,从而加速深度学习模型的训练和推理。
- 深度学习加速
- cuDNN是专门为深度学习任务而设计的,旨在加速神经网络的训练和推理。它提供了一系列高度优化的算法和函数,用于执行神经网络层的前向传播、反向传播和权重更新。
- GPU加速
- cuDNN充分利用NVIDIA GPU的并行计算能力,以高效地执行深度学习操作。这使得训练深度神经网络更快速,尤其是对于大型模型和大规模数据集。
- 版本兼容性
- cuDNN的不同版本与NVIDIA GPU架构和深度学习框架的版本兼容。因此,为了获得最佳性能,你需要选择适用于你的GPU型号和深度学习框架版本的cuDNN版本。cuDNN是免费的,可以在NVIDIA的官方网站上下载和使用。
1.3 PyTorch
- PyTorch 是一个开源的深度学习框架,由Facebook的人工智能研究团队开发和维护。它是一个非常流行的深度学习框架,用于构建和训练神经网络模型。
- 动态计算图
- PyTorch 采用动态计算图(Dynamic Computational Graph)的方式来定义和执行神经网络。这意味着你可以像编写常规Python代码一样编写神经网络,同时保留了计算图的优势,使模型的构建和调试更加直观和灵活。
- PyTorch 提供了丰富的张量操作,以及各种优化工具和模块,可以轻松构建各种类型的深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。它还支持自定义神经网络层和损失函数,允许你创建高度定制的模型。
- GPU加速
- PyTorch天然支持GPU加速,你可以在GPU上训练和执行神经网络,大幅提高了计算性能。PyTorch的GPU张量操作与CPU张量操作非常相似,使得将计算从CPU迁移到GPU变得相对容易。
2、三者关系
- CUDA、cuDNN 和 PyTorch 是三个不同但相关的组件,它们之间存在一些依赖关系,特别是在使用 PyTorch 进行深度学习开发时。
- CUDA(Compute Unified Device Architecture)
- 「CUDA是GPU并行计算平台」:CUDA 是由 NVIDIA 开发的用于并行计算的平台和编程模型。它允许开发人员利用 NVIDIA GPU 的强大计算能力来加速各种科学计算、数值模拟和深度学习任务。
- 「PyTorch依赖CUDA」:PyTorch 使用 CUDA 来加速神经网络的训练和推理。在 PyTorch 中,张量(Tensor)可以在 CPU 或 GPU 上进行计算。如果你想在 GPU 上训练神经网络,你需要确保 CUDA 已经正确安装并配置。
- 「版本兼容性」:不同版本的 PyTorch 可能需要特定版本的 CUDA。你需要根据所使用的 PyTorch 版本来选择合适的 CUDA 版本,以确保兼容性。
- cuDNN(CUDA Deep Neural Network Library)
- 「cuDNN用于深度学习加速」:cuDNN 是 NVIDIA 开发的专门用于深度学习的加速库。它提供了高度优化的卷积和其他深度神经网络层的操作,以提高深度学习模型的性能。
- 「PyTorch依赖cuDNN」:PyTorch 使用 cuDNN 来执行深度学习操作,尤其是在卷积神经网络(CNN)中。cuDNN 提供了高性能的卷积操作,使 PyTorch 能够在 GPU 上高效地进行前向传播和反向传播。
- 「版本兼容性」:不同版本的 PyTorch 需要特定版本的 cuDNN。你需要确保所使用的 cuDNN 版本与 PyTorch 版本兼容。
- 「PyTorch」
- 「PyTorch是深度学习框架」:PyTorch 是一个开源的深度学习框架,用于构建、训练和部署神经网络模型。它提供了张量操作、自动求导、优化器、损失函数等工具,使深度学习任务更加便捷。
- 「PyTorch依赖CUDA和cuDNN」:PyTorch 可以在 CPU 或 GPU 上运行,但为了获得最佳性能,特别是在大规模深度学习任务中,你通常会将 PyTorch 配置为在 GPU 上运行。这就需要确保 CUDA 和 cuDNN 已正确安装和配置。
3、Pytorch 、torchvision、python版本对应图
4、CUDA与Driver Version对应关系表
5、如何查询服务器CUDA版本、Pytorch版本
5.1 查询服务器CUDA版本
- 在terminal中输入:
nvidia-smi
即可,如下图👇所示
5.2 查询Pytorch版本
- 在terminal中输入以下指令即可,如下图👇所示
print(torch.__version__)
6、安装Pytorch、torchvision的指令
pip install torch==1.13.0 torchvision==1.4.0 -i https://pypi.douban.com/simple