Prompt Engineering、Finetune、RAG:OpenAI LLM 应用最佳实践

一、背景

本文介绍了 2023 年 11 月 OpenAI DevDay 中的一个演讲,演讲者为 John Allard 和 Colin Jarvis。演讲中,作者对 LLM 应用落地过程中遇到的问题和相关改进方案进行了总结。虽然其中用到的都是已知的技术,但是进行了很好的总结和串联,并探索了一条改进 LLM 应用的切实可行的路线,提供了一个最佳实践。

对应的 YouTube 视频:A Survey of Techniques for Maximizing LLM Performance。

二、概览

创建一个供演示的 LLM 应用 Demo 很简单,但是要投入生产环境使用却往往要投入几倍到几十倍的时间,因为几乎不可避免地要不断迭代以提升 LLM 应用程序的性能。其中,影响 LLM 应用程序性能的因素也有很多,比如数据、模型、系统、流程等等,此外涉及的技术方案也有很多,比如 In-Context  Learning、Few-shot Learning、RAG 和 Fine-tuning 等。

如何综合考虑以上的因素并合理利用相关技术是一个比较有挑战的工作,其中一种常见的错误是认为这个过程是线性的,如下图所示,首先 Prompt Engineering,再 RAG,最后 Finetune,按照这个顺序完成:

图片

作者认为最好沿着两个轴来考虑这个问题:

  • Context Optimization:如果模型没有相应的知识,比如一些私有数据。

  • LLM Optimization:如果模型不能产生正确的输出,比如不够准确或者不能遵循指令按照特定的格式或风格输出。

图片

在实践中,通常是利用各种技术不断地迭代来达到生产部署的需求,很多时候这些技术是可以累加的,需要找到有效的方法将这些改进组合起来,以获得最佳效果。如下图所示为作者总结的优化路线图,不过其涉及的优化点依旧没变,还是三点:

  • Prompt Engineering:包括 Prompt 优化以及增加 Few-shot learning,这是最简单的方式,不需要额外组件,也不用调整 LLM,只需控制 LLM 的输入即可。

  • RAG:通过检索的方式查找问题相关内容,并扩展到 LLM 的 Prompt 中,以供 LLM 参考。此优化需要引入一个检索系统,不过当前相关方案已经比较成熟,实施代价不高,比如 Milvus + LangChain。

  • Fine-tuning:通过增强 LLM 本身的能力来提升性能。依旧不需要额外组件,但是可能需要大量标注数据来微调模型,这个代价也可能比较高。

图片

三、Evaluation

在开始一切工作之前,首先要进行的是明确目标、确定评估指标。没有明确地评估指标,往往会导致走很多弯路,甚至错过一些行之有效的手段。常见的评估有自动化评估和人工评估:

  • 自动评估:针对一些常见的指标,使用常见的评估工具进行评估,实现简单,评估方便。

    • 精度评估:比如常见的 F1 Score,召回率,精确率等

    • 基于模型评估:在 LLM 的场景下,将模型作为评委进行评估是非常常见的方式,通常可以使用 GPT-4 作为评委,但是其成本比较高,因此也会折中的使用 GPT-3.5。

    • A/B Test:有些时候也会将 LLM 应用接入线上系统进行 A/B Test 评估,不过这个评估往往建立在其他评估已经取得不错结果的基础上。

  • 人工评估:有些评估可能比较主观,通常需要人工介入,比如流畅度、相关性、新颖性等,然而人工评估有时需要专业人士评估,其代价会比较高。

四、Prompt Engineering

当我们开始优化 LLM 应用时,通常首先做的事情是 Prompt Engineering,包括以下的几个方面:

  • 写一个清晰的指令

  • 将复杂任务拆分为简单的子任务

  • 给 GPT 思考的时间:比如经典的 “think step by step”

  • 给定一些参考文本:比如当前一些 LLM 的上下文窗口很大,甚至可以放下几本书,此时可以将其整体作为参考

  • 使用外部的工具:比如调用 Python,互联网搜索等

图片

虽然说首先要尝试的是 Prompt Engineering,但并不是适合所有场景:

  • 适合用于:

    • 早期测试以及了解需求

    • 与评估结合,确定 baseline 并提供后续的优化参考

  • 不适用于:

    • 引入新的信息

    • 可靠的复制复杂的样式或方法,比如学习新的编程语言

    • 最小化 Token 使用:Prompt Engineering 通常会增加输入 Token,导致计算量和时延的增加

图片

如下图所示就是一个比较模糊的指令:“以结构化方式提取有用的信息”,导致最终模型只是简单按照列表输出,输出内容也不符合要求。

图片

如下图所示,作者提供了更详细的示例,给定了清晰的指令,加了 “step by step”,要求模型不能跳过关键步骤,并且进行了任务拆解及格式约定,最终模型获得了不错的结果:

图片

如下图所示,同样可以给定模型一些 few-shot 示例,帮助模型更好的理解:

图片

评估应该贯穿 LLM 应用开发的整个生命周期,不仅是为了衡量每个阶段修改的影响,也为后续的改进提供参考。当完成 Prompt Engineering 阶段后,需要根据评估判断最可能的提升点是什么,判断模型是需要提升短期记忆(Short-term Memory)还是长期记忆(Long-term Memory):

  • 短期记忆:是指模型在处理单一输入时的临时存储信息,这些信息仅在模型处理当前输入时有效,一旦输入完成就会遗忘。它负责当前任务的理解和生成能力,不会影响模型对未来输入的处理。比如,模型缺乏特定的信息来回答问题。

  • 长期记忆:是指模型通过训练数据学到的知识,这些知识被永久的存储在模型参数中,包括语言规则、世界知识和常识等。比如,模型不能遵循特定的结构、风格或格式输出。

图片

五、RAG

RAG(Retrieval Augmented Generation,检索增强生成)通过集成外部知识库(私有数据、特定领域数据等)并使用 ICL(In-Context-Learning,上下文学习)来解决模型幻觉、知识不足等问题。如下图所示为 RAG 的常见范式,这里就不再具体陈述:

图片

当然,RAG 也不是万能的,也有其优势和不足:

  • 适合用于:

    • 向模型注入新的知识或者更新模型已有知识

    • 通过控制内容减少幻觉

  • 不适用于:

    • 嵌入对大范围领域的理解

    • 教模型掌握新的语言或特定格式、风格输出(当前模型上下文长度已经到了百万 Token 规模,似乎成为了一种可能)

    • 减少 Token 使用

图片

如下图所示为一个使用 RAG 的成功案例,通过各种手段将 Accuracy 从 Baseline 的 45% 提升到最终的 98%:

  • 45%:

    • 只使用简单的 Cosine 相似度来检索

  • 65%:

    • HyDE(Hypothetical Document Embeddings),如下图所示,主要是指利用 LLM 生成一个假设答案,然后利用假设答案去检索,最终再由 LLM 生成答案。尝试后没有取得很好的效果,所以未采用。

      图片

  • 微调 Embedding,但是代价比较高,并且比较慢,所以放弃。

  • RAG 中常用的 Chunking 方案(需要实验选择最优的 Chunk 大小),取得不错的结果。

  • 85%:

    • Re-Ranking 技术,这是搜索场景非常常见的手段,测试后取得了一定收益。

    • Classification 技术,使用模型对内容进行分类,判断内容属于哪个域,进而可以缩小检索内容或者在 Prompt 中添加一些额外的 Meta 信息,也取得不错的效果。

  • 98%:

    • Prompt Engineering,经过上述改进之后,作者再次尝试了 Prompt Engineering,还可以获得一定提升。

    • 使用工具,对于一些特定场景,允许模型使用工具能获得进一步的提升,比如访问 SQL database。

    • Query 扩展,也是搜索场景经常使用的手段,可以提升检索出的内容质量,进而提升最终的生成质量。

图片

当检索质量不好时,LLM 最终生成的结果也可能很差,比如有用户使用 GPT + RAG 的方式生成内容,并且告知模型只能根据用户提供的内容输出,然后用户认为模型输出的结果可能是包含了幻觉,但最终查看提供的内容时发现检索结果中确实有相关内容。

图片

图片

因此,在 RAG 阶段评估时,不仅要评估 LLM 生成的性能,也要评估 RAG 检索的性能,作者介绍了 Ragas 工具(GitHub - explodinggradients/ragas: Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines),其提供了几个评估维度:

  • 生成指标

    • 忠诚度:衡量生成的答案在给定上下文中的事实一致性。它是根据答案和检索到的上下文计算得出,值范围介于 0 和 1 之间,越高越好。

    • 答案相关性:侧重于评估生成的答案与给定提示的相关性。对于不完整或包含冗余信息的答案,分数较低。该指标是使用问题和答案计算的,值范围介于 0 和 1 之间,分数越高表示相关性越高。

  • 检索指标

    • 上下文精度:用于评估上下文中存在的所有与基于事实相关的条目是否排名更高。理想情况下,所有相关块都必须出现在最高排名中。该指标是使用问题和上下文计算的,值范围介于 0 和 1 之间,分数越高表示精度越高。

    • 上下文召回:衡量检索到的上下文与标注答案的一致程度。它是根据 ground truth 和检索到的上下文计算的,值范围介于 0 和 1 之间,值越高表示性能越好。

图片

六、Fine-tuning

使用 Fine-tuning 主要有两个好处:

  • 提升模型在特定领域、特定任务上的性能。

  • 由于可以避免在 Prompt 中加入检索到的内容,因此可以降低 Token 数量,从而提升效率。此外,也可以通过蒸馏的方式把大模型的能力蒸馏到小模型里,比如用 70B 的模型蒸馏 13B 的模型。

图片

如下图所示作者提供了一个示例,需要提取文档中的结构化信息,并按特定格式输出,作者提供了复杂的指令,并提供了一个示例,模型确实按照格式要求输出,但是其中有些内容却出错了:

图片

如下图所示,经过微调后,不用输入复杂的指令,也不用在 Prompt 中提供示例,模型即可生成符合要求的输出:

图片

同样,Fine-tuning 也不是万能的,有其适合的场景也有不适合的场景(如果 Prompt Engineering 没有什么效果,那么 Fine-tuning 可能不是一个正确的选择):

  • 适合用于:

    • 激发模型中已有的知识

    • 自定义相应的结构或语气

    • 教会模型非常复杂的指令

  • 不适用于:

    • 向 base 模型中注入新知识

    • 快速在新场景验证

图片

作者提供了一个 Canva 的案例,该任务要求按照特定的格式输出内容,并提供特定字段,比如 “Titile”、“Style”、“Hero Image”,从结果可以看出,经过微调的 GPT-3.5 模型效果优于原始的 GPT-4,更优于原始的 GPT-3.5:

图片

此外,作者也提供了一个失败案例,具体可以参考:Fine-tuning GPT3.5-turbo based on 140k slack messages · Ross Lazerowitz。用户想要使用 GPT 按照自己的语气和风格自动生成 Twitter 和 LinkedIn 的博文。

  • 用户尝试了各种 Prompt Engineering 手段,没有取得很好的效果。

  • 用户还尝试了让 GPT 提取他以往博文的风格,比如语气、修辞等,可能由于数据太少,也没有成功。

  • 用户最后尝试了使用 GPT 3.5 Turbo 进行 Fine-tuning,选择的数据是自己过往的 140K Slack (一种国外流行的商务聊天应用,可以理解为聊天软件)聊天记录,并将其规范化为可以训练的数据格式,然后使用 GPT-3.5 Turbo 微调。得到的结果如下所示,确实很像工作中的聊天场景,完全偏离了用户的需求。

图片

虽然上述例子中微调没有满足用户的需求,但是微调确实朝着本应该正确的方向前进了(种瓜得瓜),只是用户的微调数据集偏离了他的需求,也因此可以看出数据集的重要性。

如下图为常见的微调流程

  • Data Preparation:非常重要的阶段,需要收集、验证、标注高质量的数据,并按照要求格式化。

  • Training:需要选择合适的超参,理解损失函数等。

  • Evaluation:有各种评估指标,此外也要看是否有针对微调任务的测试集;也可以使用 GPT-4 等高质量的模型进行评估。

  • Inference:也可以进一步收集数据,并标注用于后续迭代。

图片

作者总结了一个微调的最佳实践:

  • 从 Prompt Engineering 和 Few-shot Learning 开始,这些方案比较简单,可以快速验证

  • 建立基线,以便了解核心问题及后续更好地评估和对比

  • 数据集收集的代价比较高,从小的、高质量的数据集开始,可以验证模型是否沿着正确的方向前进,此外也可以结合主动学习(Active Learning)技术,不断迭代,构建高质量的数据。

图片

七、Fine-tuning + RAG

因为 Fine-tuning 和 RAG 是优化的不同方向,因此可以将两者结合起来,发挥各自的优势,比如:

  • Fine-tuning 可以使模型更好地理解复杂指令,使模型遵循特定的格式、风格等,也就避免了复杂指令的需求,降低 Token 的使用,为 RAG 提供更大的空间。

  • RAG 可以将相关知识注入到上下文中,增强模型的短期记忆能力。

图片

作者提供了一个典型的 Text-to-SQL 任务案例:给定一个自然语言文本,以及数据库的 Schema,需要生成 SQL 查询并回答问题。如下图所示,左侧为对应的 Schema 和自然语言文本,右侧为生成的 SQL 语句:

图片

如下图所示,作者首先尝试了 RAG,并逐步使用了各种检索优化技术:

图片

如下图所示,其中 Baseline 的 69% 是经过了 Prompt Engineering 得到的结果,然后经过 RAG 逐步将其提升到 80%:但是离目标还有一定距离:

图片

如下图所示,作者进一步尝试了 Fine-tuning,首先通过 FT + Reduced Schema 可以将 Accuracy 从 69% 提升到 81.7%,进一步使用 Fine-tuning + RAG 可以提升到 83.5%,基本符合目标 84%。其中使用的都是比较简单的 Prompt Engineering 和 RAG 方案,没有采用特别复杂的技术,可以看出 Fine-tuning + RAG 的潜力。

图片

八、相关链接

  1. https://www.youtube.com/watch?v=ahnGLM-RC1Y

  2. https://humanloop.com/blog/optimizing-llms

  3. https://zhuanlan.zhihu.com/p/667938175

  4. https://github.com/explodinggradients/ragas

  5. https://rosslazer.com/posts/fine-tuning/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/729561.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

羊大师分析羊奶滋养,女性魅力绽放

羊大师分析羊奶滋养,女性魅力绽放 羊奶,自古以来便是滋养身心的天然佳品。它富含多种营养成分,如蛋白质、脂肪、矿物质和维生素等,能够为女性提供全面而均衡的营养支持,帮助她们保持健康与活力。 女性是社会的半边天&…

单片机入门:LED数码管

LED数码管 LED数码管:由多个发光二极管封装在一起组成的“8”字型的器件。如下图所示: 数码管引脚定义 一位数码管 内部由八个LED组成。器件有十个引脚。 对于数码管内的8个LED有共阴和共阳两种连接方法。 共阴:将8个LED的阴极都连接到一…

Java项目:41 springboot大学生入学审核系统的设计与实现010

作者主页:源码空间codegym 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 本大学生入学审核系统管理员和学生。 管理员功能有个人中心,学生管理,学籍信息管理,入学办理管理等。 学…

wpf prism左侧抽屉式菜单

1.首先引入包MaterialDesignColors和MaterialDesignThemes 2.主页面布局 左侧菜单显示在窗体外&#xff0c;点击左上角菜单图标通过简单的动画呈现出来 3.左侧窗体外菜单 <Grid x:Name"GridMenu" Width"150" HorizontalAlignment"Left" Ma…

鸿蒙原生应用元服务开发-WebGL网页图形库开发概述

WebGL的全称为Web Graphic Library(网页图形库)&#xff0c;主要用于交互式渲染2D图形和3D图形。目前HarmonyOS中使用的WebGL是基于OpenGL裁剪的OpenGL ES&#xff0c;可以在HTML5的canvas元素对象中使用&#xff0c;无需使用插件&#xff0c;支持跨平台。WebGL程序是由JavaScr…

解读:DUSt3R: Geometric 3D Vision Made Easy

概述&#xff1a;给定一个无约束图像集&#xff0c;即一组具有未知相机姿态和内在特征的照片&#xff0c;我们提出的 DUSt3R 方法会输出一组相应的点阵图&#xff0c;从中我们可以直接恢复通常难以一次性估算的各种几何量&#xff0c;如相机参数、像素对应关系、深度图和完全一…

【PCIe】 PCIe 拓扑结构与分层结构

&#x1f525;博客主页&#xff1a;PannLZ 文章目录 PCIe拓扑结构PCIe分层结构 PCIe拓扑结构 计算机网络中的拓扑结构源于拓扑学(研究与大小、形状无关的点、线关系的方法)。 把网络中的计算机和通信设备抽象为一个点&#xff0c;把传输介质抽象为一条线&#xff0c;由点和线组…

【物联网】stm32芯片结构组成,固件库、启动过程、时钟系统、GPIO、NVIC、DMA、UART以及看门狗电路的全面详解

一、stm32的介绍 1、概述 stm32: ST&#xff1a;指意法半导体 M&#xff1a;指定微处理器 32&#xff1a;表示计算机处理器位数 与ARM关系:采用ARM推出cortex-A&#xff0c;R,M三系中的M系列&#xff0c;其架构主要基于ARMv7-M实现 ARM分成三个系列&#xff1a; Cortex-A&…

【排序算法】推排序算法解析:从原理到实现

目录 1. 引言 2. 推排序算法原理 3. 推排序的时间复杂度分析 4. 推排序的应用场景 5. 推排序的优缺点分析 5.1 优点&#xff1a; 5.2 缺点&#xff1a; 6. Java、JavaScript 和 Python 实现推排序算法 6.1 Java 实现&#xff1a; 6.2 JavaScript 实现&#xff1a; 6.…

K8S之实现业务的金丝雀发布

如何实现金丝雀发布 金丝雀发布简介优缺点在k8s中实现金丝雀发布 金丝雀发布简介 金丝雀发布的由来&#xff1a;17 世纪&#xff0c;英国矿井工人发现&#xff0c;金丝雀对瓦斯这种气体十分敏感。空气中哪怕有极其微量的瓦斯&#xff0c;金丝雀也会停止歌唱&#xff1b;当瓦斯…

【JS逆向学习】猿人学 第五题 js混淆 乱码

逆向目标 网址&#xff1a;https://match.yuanrenxue.cn/match/5接口&#xff1a;https://match.yuanrenxue.cn/api/match/5?page2&m1709806560791&f1709806560000参数&#xff1a; Cookie(m、RM4hZBv0dDon443M)payload(m、f) 逆向过程 老规矩&#xff0c;上来先分…

第24集《灵峰宗论导读》

请大家打开讲义第79面。 在第一段呢蕅益大师先讲到这个诸法实相的妙理&#xff0c;说从我们现前一念心性来观察诸法实相有两个角度&#xff1a; 第一个角度呢就是当我们摄用归体的时候&#xff0c;所谓万法唯识一心的时候&#xff0c;这个时候我们会发觉三世诸佛&#xff0c;…

vue实现文字手工动态打出效果

vue实现文字手工动态打出效果 问题背景 本文实现vue中&#xff0c;动态生成文字手动打出效果。 问题分析 话不多说&#xff0c;直接上代码&#xff1a; <template><main><button click"makeText"><p class"text">点击生成内容…

启动vue项目执行npm run serve报错 : error in ./src/element-variables.scss

error in ./src/element-variables.scss 问题原因 node-sass的版本问题 解决方式 我直接更新了一下node-sass&#xff0c;就好了 npm install node-sass 再次执行就可以执行成功了

如何设置WhatsApp Business账号?

WhatsApp Business是WhatsApp为企业打造的一款应用程序&#xff0c;旨在帮助企业与客户更轻松地互动。如果您是一家出海企业&#xff0c;想要更好地与客户沟通&#xff0c;那么WhatsApp Business账号是您不可或缺的工具。 以下是设置WhatsApp Business账号的步骤&#xff1a; …

AIGC绘画关键词 - 写实少女

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分…

MongoDB黑窗口操作(CRUD)

目录 连接数据库 插入数据 for循环插入数据 根据条件查询 修改数据 删除数据 连接数据库 对应路径下cmd中输入命令mongo即可 插入数据 j{name:"mongo"} t{x:3} 提交&#xff1a;db.things.svae(j);db.things.svae(t); 查询&#xff1a;db.things.find(); …

Java面试挂在线程创建后续,不要再被八股文误导了!创建线程的方式只有1种

线程创建之源 OK&#xff01;咱们闲话少叙&#xff0c;直接进入正题&#xff0c;回顾一下通过实现Runnable接口&#xff0c;重写run方法创建线程的方式&#xff0c;真的可以创建一个线程吗&#xff1f;来看下面这段demo。 【代码示例1】 public class Test implements Runnab…

信号处理--使用CNN+LSTM实现单通道脑电信号EEG的睡眠分期评估

目录 背景 亮点 环境配置 数据 方法 结果 代码获取 参考文献 背景 睡眠对人体健康很重要。监测人体的睡眠分期对于人体健康和医疗具有重要意义。 亮点 架构在第一层使用两个具有不同滤波器大小的 CNN 和双向 LSTM。 CNN 可以被训练来学习滤波器&#xff0c;以从原始…

redis缓存(穿透, 雪崩, 击穿, 数据不一致, 数据并发竞争 ), 分布式锁(watch乐观锁, setnx, redission)

redis的watch缓存机制 WATCH 机制原理&#xff1a; WATCH 机制&#xff1a;使用 WATCH 监视一个或多个 key , 跟踪 key 的 value 修改情况&#xff0c;如果有key 的 value 值在事务 EXEC 执行之前被修改了&#xff0c;整个事务被取消。EXEC 返回提示信息&#xff0c;表示 事务已…