Pytorch学习 day06(torchvision中的datasets、dataloader)

torchvision的datasets

  • 使用torchvision提供的数据集API,比较方便,
  • 如果在pycharm中下载很慢,可以URL链接到迅雷中进行下载(有些URL链接在源码里)
  • 代码如下:
import torchvision  # 导入 torchvision 库
# 使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、ImageNet、COCO等数据集
train_set = torchvision.datasets.CIFAR10("./Dataset", train = True, download = True)    # root 表示数据集的存储路径,train 表示是否是训练集,download 表示是否需要下载
test_set = torchvision.datasets.CIFAR10("./Dataset", train = False, download = True)
  • CIFAR10数据集的每个样本会输出一个元组,第一个元素是PIL格式的图片,第二个元素是该样本的标签,即class,代码如下:
import torchvision  # 导入 torchvision 库
# 使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、ImageNet、COCO等数据集
train_set = torchvision.datasets.CIFAR10("./Dataset", train = True, download = True)    # root 表示数据集的存储路径,train 表示是否是训练集,download 表示是否需要下载
test_set = torchvision.datasets.CIFAR10("./Dataset", train = False, download = True)print(train_set[0])  # 输出训练集的第一个样本 ,输出为一个元组,第一个元素为PIL格式图片,第二个元素为标签,标签表示图片的类别,即class
print(train_set.classes) # 输出数据集的类别,即class
img, target = train_set[0]
print(img)  # 输出图片
print(target)  # 输出标签
print(train_set.classes[target])  # 输出训练集第一个样本图片的类别
  • 对数据集进行transforms变换
    • 注意,只需要在调用数据集API时,填入变换对象即可,由于dataset_transforms是Compose类实例化后的对象,所以直接传入即可,代码如下:
import torchvision  # 导入 torchvision 库
from torch.utils.tensorboard import SummaryWriterdataset_transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),  # 将PIL格式图片转换为Tensor格式
])  # Compose函数将多个transforms组合在一起# 使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、ImageNet、COCO等数据集
train_set = torchvision.datasets.CIFAR10("./Dataset", train = True, transform=dataset_transforms, download = True)    # root 表示数据集的存储路径,train 表示是否是训练集,transform 表示对数据集进行的变换,download 表示是否下载数据集
test_set = torchvision.datasets.CIFAR10("./Dataset", train = False, transform=dataset_transforms, download = True)writer = SummaryWriter("logs")  # 实例化SummaryWriter类,参数log_dir表示日志文件的存储路径
for i in range(10):img, target = train_set[i]  writer.add_image("train_set_img", img, i) # 将图片写入tensorboardwriter.close()  # 关闭SummaryWriter对象
  • tensorboard的展示结果如下:
    在这里插入图片描述

torchvision中的dataloader

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/727887.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VM 虚拟机 ubuntu 解决无法连接网络问题

添加网卡法 就是在虚拟机的设置那里多增加一个网卡

如何度量关键成果KR的完成情况?

明确度量指标 首先,需要为每一个关键成果(Key Result)设定明确的度量指标。这些指标应该是具体、可衡量的,以便能够清晰地反映关键成果的完成情况。例如,如果关键成果是提高网站的用户转化率,那么度量指标…

论文阅读_解释大模型_语言模型表示空间和时间

英文名称: LANGUAGE MODELS REPRESENT SPACE AND TIME 中文名称: 语言模型表示空间和时间 链接: https://www.science.org/doi/full/10.1126/science.357.6358.1344 https://arxiv.org/abs/2310.02207 作者: Wes Gurnee & Max Tegmark 机构: 麻省理工学院 日期: 2023-10-03…

滑动窗口算法

前言 滑动窗口作为一个考点较高的算法,广泛应用于子串问题中,本文将进行详细讲解。 一、滑动窗口是什么 滑动窗口是双指针算法的一种,基本思路为维护一个窗口,然后从前往后遍历元素进行运算。 二、滑动窗口算法和其他双指针算法…

Unity Samples和帧动画的问题

拖动序列帧图片和自己创建clip的帧率不同 我今天在创建帧动画的时候用了两种方式第一种是直接拖动序列帧图片到Hierachy,然后生成的第二种是这样我发现两者播放的动画速率不一样最后查了半天查不到原因。最后发现是Samples的原因,而且Unity把Samples这个…

分类预测 | Matlab基于GWO-RBF灰狼算法优化径向基神经网络的分类预测

分类预测 | Matlab基于GWO-RBF灰狼算法优化径向基神经网络的分类预测 目录 分类预测 | Matlab基于GWO-RBF灰狼算法优化径向基神经网络的分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 Matlab基于GWO-RBF灰狼算法优化径向基神经网络的分类预测。基于灰狼算法(GWO…

记一次Flink任务无限期INITIALIZING排查过程

1.前言 环境:Flink-1.16.1,部署模式:Flink On YARN,现象:Flink程序能正常提交到 YARN,Job状态是 RUNNING,而 Task状态一直处于 INITIALIZING,如下图: 通过界面可以看到…

小火星露谷模组管理页面简介

1. 已有详细介绍的功能 模组管理页面部分功能已经有较为详细的介绍: 添加模组:https://svmbbs.smallfire.cn/d/15-dian-nao-zhong-yi-jing-you-duo-ge-mo-zu-ya-suo-wen-jian-ru-he-pi-liang-an-zhuang一键更新模组:https://svmbbs.smallfi…

python基础——入门必备知识

📝前言: 本文为专栏python入门基础的第一篇,主要带大家先初步学习一下python中的一些基本知识,认识,了解一下python中的一些专有名词,为日后的学习打下良好的基础,。本文主要讲解以下的python中的基本语法&…

苹果发布iOS17.4正式版升级,罕见带来一大波新功能!苹果数据备份软件 iOS系统管理软件 苹果数据备份到icloud iOS系统数据处理

近日,苹果发布了iOS17.4正式版,没想到的是居然有一大波新功能,如果你也是用iPhone的话,尤其是iPhone15新系列的,那么推荐你一定要升级下。下面让我给大家详细讲讲: 「电池健康」升级 电池设置界面得到了优…

数字孪生10个技术栈:原型设计,界面从无到有雏形的第一步。

一、什么是原型设计 可视化界面的原型设计是指在设计过程中创建一个低保真或高保真的可视化模型,以展示和演示最终产品的外观、布局和交互。它是设计师和开发团队在实际开发之前用来验证和确认设计方案的一个重要步骤。 可视化界面的原型设计主要包括以下几个方面&…

【OpenCV】仿 IOS 锁屏时钟

OpenCV 是一个开源的计算机视觉(Computer Vision)与机器学习软件库,提供了多种图像处理算法与接口。在图像处理中,按位运算是一类重要的运算,可以用于提取图像的重要部分。本文主要记录如何使用 OpenCV-Python 绘制仿 …

grid布局所有元素在同一行显示且等分列

目录 一、问题 二、实现方式 三、总结 tiips:如嫌繁琐,直接移步总结即可! 一、问题 1.grid布局可以通过 grid-template-columns来指定列的宽度。且可以通过repeat来指定重复的次数。但是现在的需求是:grid布局中元素的数量不确定&#…

一篇文章带你通关并查集(持续更新中)

这篇文章的所有题目均来自于自行整理,代码均来自于自行梳理调试(思路可能比较暴力)。初衷在于整理练习思路,且起到督促自己学习的作用 本文分成将三个模块 1.普及组 (洛谷黄题) 2.提高组 (洛…

sqlserver 默认端口号不通 1433 开启监听

1.打开SQL Server 2022 配置管理器 查看这3个东西是否启用,然后双击TCP/IP 把默认端口全部设置成1433 然后cmd netstat -an | find "1433" 查看端口是否打开监听

存储架构 NAS 与 SAN:有什么区别?

SAN(Storage Area Network)和NAS(Network Attached Storage)是两种存储架构,它们在数据存储和管理方面有着不同的设计理念和应用场景。SAN通常将存储设备连接到一个独立的高速网络,而NAS则通过普通的网络协…

Unity性能优化篇(九) 模型优化之LOD技术概述以及操作方法

LOD模型优化技术概述: 1.LOD技术可以根据摄像头远近来显示不同精度的模型(例如吃鸡游戏 随着跳伞高度 来显示下面树木以及建筑的模型精度) LOD模型优化技术操作方法: 可使用Unity自带的LOD Group组件,并根据项目的情况来调整该组件的属性。Untiy资源商店也有一些其…

如何选择VR全景设备,才能拍摄高质量的VR全景?

随着VR全景技术的不断成熟和发展,VR全景已经成为了摄影爱好者乐于尝试的新手段,VR全景也为广大用户提供了一个全新的视角来探索世界,如果想要拍摄出高质量的VR全景,选择合适的VR全景拍摄设备以及掌握正确的拍摄技巧才是关键。 VR全…

云手机:网页运行?易用性分析

云手机作为一种新兴的技术,近年来在移动互联网领域备受关注。它通过云计算技术,将手机的操作系统和应用程序运行在远程服务器上,用户通过网络连接访问和操作云手机,从而实现了在任何设备上都能够享受手机的功能和体验。本文将探讨…

vue系列——vscode,node.js vue开发环境搭建

第一步安装node.js 推荐使用nvm进行node.js 的安装 nvm(Node.js version manager) 是一个命令行应用,可以协助您快速地 更新、安装、使用、卸载 本机的全局 node.js 版本。 可以去网上查找相关版本 我这里使用 nvm-setu… 链接:https://pan.baidu.com/s/1UEUtmzw5x…