【自然语言处理】BitNet b1.58:1bit LLM时代

论文地址:https://arxiv.org/pdf/2402.17764.pdf

相关博客
【自然语言处理】BitNet b1.58:1bit LLM时代
【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer
【自然语言处理】【大模型】MPT模型结构源码解析(单机版)
【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)

一、BitNet

​ BitNet采用了与Transformer基本一致的模型架构,仅将标准矩阵乘法层换成了BitLinear,其他组件仍然是高精度的。BitLinear主要是包含的操纵:权重量化、激活量化以及LayerNorm。

权重量化。通过减均值实现0中心化,然后用sign实现二值化。假设全精度权重为 W ∈ R n × m W\in\mathcal{R}^{n\times m} WRn×m,则二值量化过程为
W ~ = Sign ( W − α ) (1) \widetilde{W}=\text{Sign}(W-\alpha) \tag{1} \\ W =Sign(Wα)(1)

Sign ( W i j ) = { + 1 , if W i j > 0 − 1 , if W i j ≤ 0 (2) \text{Sign}(W_{ij})=\begin{cases} +1,&&\text{if}\;W_{ij}>0 \\ -1,&&\text{if}\;W_{ij}\leq 0 \\ \end{cases} \tag{2} \\ Sign(Wij)={+1,1,ifWij>0ifWij0(2)

α = 1 n m ∑ i j W i j (3) \alpha=\frac{1}{nm}\sum_{ij}W_{ij} \tag{3} \\ α=nm1ijWij(3)

激活量化。使用absmax的方式将激活量化至b-bit。具体的实现方式是乘以 Q b Q_b Qb再除以输入矩阵的最大绝对值,从而将激活缩放至 [ − Q b , Q b ] ( Q b = 2 b − 1 ) [-Q_b,Q_b](Q_b=2^{b-1}) [Qb,Qb](Qb=2b1),即
x ~ = Quant ( x ) = Clip ( x × Q b γ , − Q b + ϵ , Q b − ϵ ) (4) \tilde{x}=\text{Quant}(x)=\text{Clip}(x\times\frac{Q_b}{\gamma},-Q_b+\epsilon,Q_b-\epsilon) \tag{4}\\ x~=Quant(x)=Clip(x×γQb,Qb+ϵ,Qbϵ)(4)

Clip ( x , a , b ) = max ⁡ ( a , min ⁡ ( b , x ) ) , γ = ∥ x ∥ ∞ (5) \text{Clip}(x,a,b)=\max(a,\min(b,x)),\quad\gamma=\parallel x\parallel_\infty \tag{5} \\ Clip(x,a,b)=max(a,min(b,x)),γ=∥x(5)

其中 ϵ \epsilon ϵ是防止裁剪时溢出的小浮点数。

​ 对于非线性函数之前的激活值则采用不同的量化方式,通过减轻最小值的方式将其缩放至 [ 0 , Q b ] [0,Q_b] [0,Qb],从而保证所有值均为非负:
x ~ = Quant ( x ) = Clip ( ( x − η ) × Q b γ , ϵ , Q b − ϵ ) , η = min ⁡ i , j x i j (6) \tilde{x}=\text{Quant}(x)=\text{Clip}((x-\eta)\times\frac{Q_b}{\gamma},\epsilon,Q_b-\epsilon),\quad\eta=\min_{i,j}x_{ij}\tag{6} \\ x~=Quant(x)=Clip((xη)×γQb,ϵ,Qbϵ),η=i,jminxij(6)
LayerNorm。在对激活值量化前,为了保证量化后的方差稳定,采用了SubLN

BitLinear的完成计算过程为
y = W ~ x ~ = W ~ Quant ( LN ( x ) ) × β γ Q b (7) y=\widetilde{W}\tilde{x}=\widetilde{W}\text{Quant}(\text{LN}(x))\times\frac{\beta\gamma}{Q_b}\tag{7} \\ y=W x~=W Quant(LN(x))×Qbβγ(7)

LN ( x ) = x − E ( x ) Var ( x ) + ϵ , β = 1 n m ∥ W ∥ 1 (8) \text{LN}(x)=\frac{x-E(x)}{\sqrt{\text{Var}(x)+\epsilon}},\quad\beta=\frac{1}{nm}\parallel W\parallel_1 \tag{8} \\ LN(x)=Var(x)+ϵ xE(x),β=nm1W1(8)

二、BitNet b1.58

​ BitNet b1.58在BitNet的基础上做了一些修改。

权重量化。采用absmean的方式将权重约束在 { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}中,而BitNet则将权重约束为二值 { − 1 , 1 } \{-1,1\} {1,1}。具体来说,先使用平均绝对值来缩放权重,然后通过舍入的方式转换为 { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}
W ~ = RoundClip ( W γ + ϵ , − 1 , 1 ) (9) \widetilde{W}=\text{RoundClip}(\frac{W}{\gamma+\epsilon},-1,1)\tag{9} \\ W =RoundClip(γ+ϵW,1,1)(9)

RoundClip ( x , a , b ) = max ⁡ ( a , min ⁡ ( b , round ( x ) ) ) (10) \text{RoundClip}(x,a,b)=\max(a,\min(b,\text{round}(x)))\tag{10} \\ RoundClip(x,a,b)=max(a,min(b,round(x)))(10)

γ = 1 n m ∑ i j ∣ W i j ∣ (11) \gamma=\frac{1}{nm}\sum_{ij}|W_{ij}|\tag{11} \\ γ=nm1ijWij(11)

激活量化。同BitNet一样,但是对于非线性函数前的激活不再量化至 [ 0 , Q b ] [0,Q_b] [0,Qb],而是都量化至 [ − Q b , Q b ] [-Q_b,Q_b] [Qb,Qb]

​ 此外,为了能够方便于开源软件兼容,整体结构采用类似LLaMA的结构。具体来说,使用RMSNorm、SwiGLU、RoPE并移除所有偏置。

三、实验

1. 困惑度

在这里插入图片描述

​ BitNet b1.58在3B大小时,困惑度与LLaMA相匹配,但是速度快2.71倍且显存使用减少3.55倍。当BitNet b1.58大小为3.9B时,速度快2.4倍且显存减少3.32倍,并且效果显著优于LLaMA 3B。

2. 下游任务

在这里插入图片描述

​ 随着模型尺寸的增加,BitNet b1.58和LLaMA在下游任务上的差距逐步缩小。在尺寸达到3B时,BitNet b.158能够与全精度相匹配。

3. 显存和延时

在这里插入图片描述

​ 随着模型尺寸的增加,BitNet b1.58的速度优势和显存优势会更加明显。

4. 能耗

在这里插入图片描述

​ 矩阵乘法是LLM中能耗最高的部分。BitNet b1.58主要是INT8的加法计算,而LLaMA则是由FP16加法和乘法组成。在7nm芯片上,BitNet b1.58能够节约71.4倍的计算能耗。随着模型尺寸的增加,BitNet b1.58在能耗方面会越来越高效。

5. 吞吐

在这里插入图片描述
​ 相同机器下,BitNet b1.58的batch size是LLaMA LLM的11倍,吞吐则是8.9倍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在 Mac 上成功轻松地恢复 Excel 文件

Microsoft Excel 的 Mac 版本始终略落后于 Windows 版本,这也许可以解释为什么如此多的用户渴望学习如何在 Mac 上恢复 Excel 文件。 但导致重要电子表格不可用的不仅仅是 Mac 版 Excel 的不完全稳定性。用户有时会失去注意力并删除错误的文件,存储设备…

2024-03-03 c++

🌸 MFC进度条控件 | Progress Control 1。新建MFC项目(基于对话框、静态库) 2。添加控件,删除初始的3个多余控件 加1个progress control,修改其marquee为true,添加变量:变量名为test_progress。…

Angular基础---HelloWorld---Day1

文章目录 1. 创建Angular 项目2.对Angular架构的最基本了解3.创建并引用新的组件(component)4.对Angular架构新的认识(多组件)5.组件中业务逻辑文件的编辑(ts文件)6.标签中属性的绑定(1) ID的绑定(2) class…

String和String Builder

String和StringBuilder的区别 String类 String类代表字符串。java程序中所有字符串文字(例如“abc”)都被实现为此类的实例。 String类源码是用final修饰的,它们的值在创建后不能被更改。字符串缓冲区支持可变字符串。 String对象是不可变…

STM32 (2)

1.stm32编程模型 将C语言程序烧录到芯片中会存储在单片机的flsah存储器中,给芯片上电后,Flash中的程序会逐条进入到CPU中去执行,进而CPU去控制各种模块(即外设)去实现各种功能。 2.寄存器和寄存器编程 CPU通过控制其…

Apache POI的简单介绍与应用

介绍 Apache POI 是一个处理Miscrosoft Office各种文件格式的开源项目。我们可以使用 POI 在 Java 程序中对Miscrosoft Office各种文件进行读写操作。PS: 一般情况下,POI 都是用于操作 Excel 文件,如图: Apache POI 的应用场景&…

SQL无列名注入

SQL无列名注入 ​ 前段时间,队里某位大佬发了一个关于sql注入无列名的文章,感觉好像很有用,特地研究下。 关于 information_schema 数据库: ​ 对于这一个库,我所知晓的内容并不多,并且之前总结SQL注入的…

设计模式-桥接模式实践案例

桥接模式(Bridge Pattern)是一种结构型设计模式,用于将抽象与实现分离,使它们可以独立地变化。这种模式通过提供一个桥接结构,可以将实现接口的实现部分和抽象层中可变化的部分分离开来。 以下是一个使用 Java 实现桥…

【数据结构】_包装类与泛型

目录 1. 包装类 1.1 基本数据类型和对应的包装类 1.2 (自动)装箱和(自动)拆箱 1.2.1 装箱与拆箱 1.2.2 自动(显式)装箱与自动(显式)拆箱 1.3 valueOf()方法 2. 泛型类 2.1 泛…

【深度学习笔记】计算机视觉——目标检测和边界框

目标检测和边界框 前面的章节(例如 sec_alexnet— sec_googlenet)介绍了各种图像分类模型。 在图像分类任务中,我们假设图像中只有一个主要物体对象,我们只关注如何识别其类别。 然而,很多时候图像里有多个我们感兴趣…

某大型制造企业数字化转型规划方案(附下载)

目录 一、项目背景和目标 二、业务现状 1. 总体应用现状 2. 各模块业务问题 2.1 设计 2.2 仿真 2.3 制造 2.4 服务 2.5 管理 三、业务需求及预期效果 1. 总体业务需求 2. 各模块业务需求 2.1 设计 2.2 仿真 2.3 制造 2.4 服务 2.5 管理 四、…

在vue中对keep-alive的理解,它是如何实现的,具体缓存的是什么?

对keep-alive的理解,它是如何实现的,具体缓存的是什么? (1)keep-alive有以下三个属性:注意:keep-alive 包裹动态组件时,会缓存不活动的组件实例。主要流程 (2&#xff09…

数字化转型导师坚鹏:证券公司数字化营销

证券公司数字化营销 ——借力数字化技术实现零售业务的批量化、精准化、场景化、智能化营销 课程背景: 很多证券公司存在以下问题: 不知道如何提升证券公司数字化营销能力? 不知道证券公司如何开展数字化营销工作? 不知道…

胎神游戏集第二期

延续上一期 一、海岛奇胎 #include<bits/stdc.h> #include<windows.h> #include<stdio.h> #include<conio.h> #include<time.h> using namespace std; typedef BOOL (WINAPI *PROCSETCONSOLEFONT)(HANDLE, DWORD); PROCSETCONSOLEFONT SetCons…

Linux 安装pip和换源

一 配置文档 Linux和macOS&#xff1a; 全局配置&#xff1a;/etc/pip.conf 用户级配置&#xff1a;~/.pip/pip.conf 或 ~/.config/pip/pip.conf 二 下载 和 安装 # pip 安装 wget https://bootstrap.pypa.io/get-pip.py python get-pip.py 三 查看和升级 pip -Vpython -m…

GO语言学习笔记(与Java的比较学习)(十一)

协程与通道 什么是协程 一个应用程序是运行在机器上的一个进程&#xff1b;进程是一个运行在自己内存地址空间里的独立执行体。一个进程由一个或多个操作系统线程组成&#xff0c;这些线程其实是共享同一个内存地址空间的一起工作的执行体。 并行是一种通过使用多处理器以提…

Java虚拟机 - JVM

JVM的内存区域划分 JVM它其实也是一个进程,进程运行的过程中,会从操作系统中申请一些资源.内存就是其中的一种.这些内存就支撑了java程序的运行.JVM从系统中申请的一大块内存,会根据实际情况和使用用途来划分出不同的空间,这个就是区域划分.它一般分为 堆区, 栈区, 程序计数器…

springboot240基于Spring boot的名城小区物业管理系统

基于Spring boot的名城小区物业管理系统的设计与实现 摘要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。以前相关行业对于物业信息的管理和控制&#xff0c;采用人工登记的方式保存相关数…

InnoDB存储引擎对MVCC的实现

MVCC MVCC的目的 在搞清楚MVCC之前,我们要搞懂一个问题,MVCC到底解决的是什么问题? 我用一句话概括,那就是为了解决读-写可以一起的问题! 在我们的印象里,InnoDB可以读读并发,不能读写并发,或者写写并发 这是很正常的想法,因为如果读写并发的化,会有并发问题 而对于写写…

带压缩路径的并查集

find带压缩路径的并查集 int fa[]; void init(int _size) {for(int i0;i<_size;i){fa[i] i;} } int find(int aim) {int cur aim;while (fa[aim] ! aim){aim fa[aim];}while (fa[cur] ! cur){int tmp cur;cur fa[cur];fa[tmp] aim;}return aim; } void join(int a,in…