寻找峰值[中等]

在这里插入图片描述

优质博文IT-BLOG-CN

一、题目

峰值元素是指其值严格大于左右相邻值的元素。给你一个整数数组nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设nums[-1] = nums[n] = -∞

你必须实现时间复杂度为O(log n)的算法来解决此问题。

示例 1:
输入:nums = [1,2,3,1]
输出:2
解释:3是峰值元素,你的函数应该返回其索引2

示例 2:
输入:nums = [1,2,1,3,5,6,4]
输出:15
解释:你的函数可以返回索引1,其峰值元素为2;或者返回索引5, 其峰值元素为6

提示:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
对于所有有效的i都有nums[i] != nums[i + 1]

二、代码

方案一:寻找最大值

由于题目保证了nums[i]≠nums[i+1],那么数组nums中最大值两侧的元素一定严格小于最大值本身。因此,最大值所在的位置就是一个可行的峰值位置。

我们对数组nums进行一次遍历,找到最大值对应的位置即可。

class Solution {public int findPeakElement(int[] nums) {int idx = 0;for (int i = 1; i < nums.length; ++i) {if (nums[i] > nums[idx]) {idx = i;}}return idx;}
}

时间复杂度: O(n),其中n是数组nums的长度。
空间复杂度: O(1)

方案二:二分查找

首先要注意题目条件,在题目描述中出现了nums[-1] = nums[n] = -∞,这就代表着 只要数组中存在一个元素比相邻元素大,那么沿着它一定可以找到一个峰值。

根据上述结论,我们就可以使用二分查找找到峰值

查找时,左指针l,右指针r,以其保持左右顺序为循环条件

根据左右指针计算中间位置m,并比较mm+1的值,如果m较大,则左侧存在峰值,r = m,如果m + 1较大,则右侧存在峰值,l = m + 1

class Solution {public int findPeakElement(int[] nums) {int left = 0, right = nums.length - 1;for (; left < right; ) {int mid = left + (right - left) / 2;if (nums[mid] > nums[mid + 1]) {right = mid;} else {left = mid + 1;}}return left;}
}

时间复杂度: O(log⁡n),其中n是数组nums的长度。
空间复杂度: O(1)

方案三:迭代爬坡

俗话说「人往高处走,水往低处流」。如果我们从一个位置开始,不断地向高处走,那么最终一定可以到达一个峰值位置。

因此,我们首先在[0,n)的范围内随机一个初始位置i,随后根据nums[i−1],nums[i],nums[i+1]三者的关系决定向哪个方向走:
【1】如果nums[i−1]<nums[i]>nums[i+1],那么位置i就是峰值位置,我们可以直接返回i作为答案;
【2】如果nums[i−1]<nums[i]<nums[i+1],那么位置i处于上坡,我们需要往右走,即i←i+1

如果nums[i−1]>nums[i]>nums[i+1],那么位置i处于下坡,我们需要往左走,即i←i−1

如果nums[i−1]>nums[i]<nums[i+1],那么位置i位于山谷,两侧都是上坡,我们可以朝任意方向走。

如果我们规定对于最后一种情况往右走,那么当位置i不是峰值位置时:
【1】如果nums[i]<nums[i+1],那么我们往右走;
【2】如果nums[i]>nums[i+1],那么我们往左走。

class Solution {public int findPeakElement(int[] nums) {int n = nums.length;int idx = (int) (Math.random() * n);while (!(compare(nums, idx - 1, idx) < 0 && compare(nums, idx, idx + 1) > 0)) {if (compare(nums, idx, idx + 1) < 0) {idx += 1;} else {idx -= 1;}}return idx;}// 辅助函数,输入下标 i,返回一个二元组 (0/1, nums[i])// 方便处理 nums[-1] 以及 nums[n] 的边界情况public int[] get(int[] nums, int idx) {if (idx == -1 || idx == nums.length) {return new int[]{0, 0};}return new int[]{1, nums[idx]};}public int compare(int[] nums, int idx1, int idx2) {int[] num1 = get(nums, idx1);int[] num2 = get(nums, idx2);if (num1[0] != num2[0]) {return num1[0] > num2[0] ? 1 : -1;}if (num1[1] == num2[1]) {return 0;}return num1[1] > num2[1] ? 1 : -1;}
}

时间复杂度: O(n),其中n是数组nums的长度。在最坏情况下,数组nums单调递增,并且我们随机到位置0,这样就需要向右走到数组nums的最后一个位置。
空间复杂度: O(1)

方法四:二分查找优化

我们可以发现,如果nums[i]<nums[i+1],并且我们从位置i向右走到了位置i+1,那么位置i左侧的所有位置是不可能在后续的迭代中走到的。

这是因为我们每次向左或向右移动一个位置,要想「折返」到位置i以及其左侧的位置,我们首先需要在位置i+1向左走到位置i,但这是不可能的。

并且根据方法二,我们知道位置i+1以及其右侧的位置中一定有一个峰值,因此我们可以设计出如下的一个算法:
【1】对于当前可行的下标范围[l,r],我们随机一个下标i
【2】如果下标i是峰值,我们返回i作为答案;
【3】如果nums[i]<nums[i+1],那么我们抛弃[l,i]的范围,在剩余[i+1,r]的范围内继续随机选取下标;
【4】如果nums[i]>nums[i+1],那么我们抛弃[i,r]的范围,在剩余[l,i−1]的范围内继续随机选取下标。

在上述算法中,如果我们固定选取i[l,r]的中点,那么每次可行的下标范围会减少一半,成为一个类似二分查找的方法,时间复杂度为 O(log⁡n)

class Solution {public int findPeakElement(int[] nums) {int n = nums.length;int left = 0, right = n - 1, ans = -1;while (left <= right) {int mid = (left + right) / 2;if (compare(nums, mid - 1, mid) < 0 && compare(nums, mid, mid + 1) > 0) {ans = mid;break;}if (compare(nums, mid, mid + 1) < 0) {left = mid + 1;} else {right = mid - 1;}}return ans;}// 辅助函数,输入下标 i,返回一个二元组 (0/1, nums[i])// 方便处理 nums[-1] 以及 nums[n] 的边界情况public int[] get(int[] nums, int idx) {if (idx == -1 || idx == nums.length) {return new int[]{0, 0};}return new int[]{1, nums[idx]};}public int compare(int[] nums, int idx1, int idx2) {int[] num1 = get(nums, idx1);int[] num2 = get(nums, idx2);if (num1[0] != num2[0]) {return num1[0] > num2[0] ? 1 : -1;}if (num1[1] == num2[1]) {return 0;}return num1[1] > num2[1] ? 1 : -1;}
}

时间复杂度: O(log⁡n),其中n是数组nums的长度。
空间复杂度: O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715674.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python统计分析——泊松回归

参考资料&#xff1a;用python动手学统计学 概率分布为泊松分布、联系函数为对数函数的广义线性模型叫作泊松回归。解释变量可以有多个&#xff0c;连续型和分类型的解释变量也可以同时存在。 1、案例说明 分析不同气温与啤酒销量的关系。构造不同气温下的销量的数学模型&…

Java之美[从菜鸟到高手演变]之Json类型数据的处理

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。 易于人阅读和编写。同时也易于机器解析和生成。 它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。 JSON采用完全独立于语言的文本格式&#xff0c;但是也使…

Unity--自动版面(Horizontal Layout Croup)||Unity--自动版面(Vertical Layout Group)

Unity--自动版面&#xff08;Horizontal Layout Croup&#xff09; Horizontal Layout Croup&#xff1a; “水平布局组”组件将其子布局元素并排放置。它们的宽度由各自的最小&#xff0c;首选和灵活的宽度决定&#xff0c;具体取决于以下模型&#xff1a; 所有子布局元素的…

el-form里面表单遍历渲染,里面放el-row,一行放3个表单怎么实现

需求&#xff1a; 需要实现 el-form里面的表单遍历渲染&#xff0c;里面放el-row,一行放3个表单怎么实现&#xff1f; 废话不多说直接上demo <el-form ref"form" :model"form" label-width"80px"><el-row v-for"(row, index) in M…

服务器硬件基础知识全解析

在信息技术日新月异的今天&#xff0c;服务器作为数据处理和存储的核心&#xff0c;其重要性不言而喻。了解服务器硬件基础知识&#xff0c;对于IT从业者以及广大技术爱好者来说&#xff0c;都是不可或缺的技能。本文将详细解析服务器硬件的基础知识&#xff0c;帮助读者建立起…

BUGKU bp

打开环境&#xff0c;他提示了弱密码top1000&#xff0c;随便输入密码123抓包爆破 发现长度都一样&#xff0c;看一下响应发现一段js代码&#xff0c;若r值为{code: bugku10000}&#xff0c;则会返回错误&#xff0c;通过这一句“window.location.href success.php?coder.cod…

计算机二级Python刷题笔记------基本操作题11、14、17、21、30(考察列表)

文章目录 第十一题&#xff08;列表遍历&#xff09;第十四题&#xff08;len&#xff09;第十七题&#xff08;len、insert&#xff09;第二十一题&#xff08;append&#xff09;第三十题&#xff08;二维列表&#xff09; 第十一题&#xff08;列表遍历&#xff09; 题目&a…

mysql数据库root权限读写文件

如果没有shell&#xff0c;只有数据库权限的情况下&#xff1a; 1. udf 提权提示没有目录&#xff1a;使用数据流创建目录 1. select xxx into outfile C:\\phpstudy_pro\\Extensions\\MySQL5.5.29\\lib\::$INDEX_ALLOCATION;2. select xxx into outfile C:\\phpstudy_pro\…

springcloud和基础服务的搭建以及封装

代码仓库地址&#xff1a;https://github.com/zhaoyiwen-wuxian/springcloud-common page分页也进行了封装&#xff0c;只需要添加到pom中&#xff0c;将会自动进行分页&#xff0c;并且后端不需要写任何的分页数据。只需要前端自己传分页参数即可&#xff0c;并且里面封装了很…

Hololens 2应用开发系列(2)——MRTK基础知识及配置文件配置(上)

Hololens 2应用开发系列&#xff08;2&#xff09;——MRTK基础知识及配置文件配置 一、前言二、MRTK基础知识2.1 MRTK概述2.2 MRTK运行逻辑2.3 MRTK配置文件介绍2.4 MRTK服务 三、配置文件使用3.1 总配置文件3.2 相机配置3.3 其他配置 参考文献 一、前言 在前面的文章中&…

高效运维监测:全面掌控IT基础设施与应用性能

在现代IT环境中&#xff0c;确保服务器、网络设备和应用程序的稳定运行至关重要。为了实现这一目标&#xff0c;运维团队需要一套高效、灵活的监测系统&#xff0c;能够实时追踪各种性能指标&#xff0c;并在出现问题时迅速发出警报。本文将详细介绍这样一套监测系统&#xff0…

WebServer -- 数据库连接池

目录 &#x1f382;基础知识 &#x1f6a9;整体内容 &#x1f33c;单例模式创建 &#x1f382;连接池&#xff08;代码实现&#xff09; 初始化 获取 && 释放连接 销毁连接池 &#x1f351;RAII 机制释放数据库连接 定义 实现 &#x1f382;基础知识 什么是…

使用 Docker 部署 Answer 问答平台

1&#xff09;介绍 GitHub&#xff1a;https://github.com/apache/incubator-answer Answer 问答社区是在线平台&#xff0c;让用户提出问题并获得回答。用户可以发布问题并得到其他用户的详细答案、建议或信息。回答可以投票或评分&#xff0c;有助于确定有用的内容。标签和分…

Ps:历史记录面板

Ps菜单&#xff1a;窗口/历史记录 Window/History 历史记录 History面板提供了对图像编辑过程中所进行更改的深入控制&#xff0c;可以让用户回溯并查看每一步操作&#xff0c;从而允许用户轻松撤销错误或比较不同的编辑效果。 ◆ ◆ ◆ 常用操作方法与技巧 “历史记录”面板…

CentOS7设置虚拟机语言为中文

1.查看本地安装的语言 locale -a 是一个Linux命令&#xff0c;用于列出系统中可用的所有区域设置&#xff08;locales&#xff09;它包含了各种语言和地区的不同设置。 打开终端&#xff08;右键open terminal&#xff09;输入 locale -a 查看本地安装的语言&#xff1a; 其中z…

如何在Unity项目中使用Plastic SCM进行版本控制

引言 Plastic SCM是一个版本控制系统&#xff0c;专为处理大型项目而设计&#xff0c;特别适用于游戏开发中的Unity项目。它提供了强大的分支和合并工具&#xff0c;使团队能够高效地协作开发。 安装和设置 安装Plastic SCM 访问Plastic SCM官网下载客户端。根据您的操作系…

一些可以访问gpt的方式

1、Coze扣子是新一代 AI 大模型智能体开发平台。整合了插件、长短期记忆、工作流、卡片等丰富能力&#xff0c;扣子能帮你低门槛、快速搭建个性化或具备商业价值的智能体&#xff0c;并发布到豆包、飞书等各个平台。https://www.coze.cn/ 2、https://poe.com/ 3、插件阿里…

EasyRecovery16电脑硬盘数据恢复软件功能详解

在数字化时代&#xff0c;人们在日常生活和工作中越来越依赖于电脑和移动设备。不管是个人用户还是企业&#xff0c;数据的重要性都不言而喻。然而&#xff0c;数据丢失和损坏的风险也随之增加&#xff0c;因此&#xff0c;数据恢复软件的需求也日益增长。 EasyRecovery 16是一…

不同材质的油封及其使用温度限制

油封&#xff0c;也称为旋转轴密封件&#xff0c;是防止润滑油从机器和轴承内部间隙泄漏的重要部件。油封的有效性很大程度上取决于其承受运行过程中所暴露温度的能力。 材料问题&#xff1a;不同材料及其温度限制 制造油封所使用的不同材料可以承受不同的温度范围。这里有一…

【打工日常】使用docker部署在线Photopea用于linux下替代ps

一、Photopea介绍 linux没有ps适配&#xff0c;对于有时候工作来说确实不方便&#xff0c;我找了很久&#xff0c;才找到了一款功能可以跟ps接近的在线软件&#xff0c;使用docker部署就可以了。它是ps的最佳替代品之一&#xff0c;其界面几乎与ps相同&#xff0c;只不过它是在…