实践航拍小目标检测,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下的小目标检测识别分析系统

关于无人机相关的场景在我们之前的博文也有一些比较早期的实践,感兴趣的话可以自行移步阅读即可:

《deepLabV3Plus实现无人机航拍目标分割识别系统》

《基于目标检测的无人机航拍场景下小目标检测实践》

《助力环保河道水质监测,基于yolov5全系列模型【n/s/m/l/x】开发构建不同参数量级的无人机航拍河道污染漂浮物船只目标检测识别系统,集成GradCAM对模型检测识别能力进行分析》

《基于YOLO开发构建红外场景下无人机航拍车辆实例分割检测识别分析系统》

《基于轻量级YOLO模型开发构建大疆无人机检测系统》

《基于轻量级YOLOv5n/s/m三款模型开发构建基于无人机视角的高空红外目标检测识别分析系统,对比测试分析性能》

《基于目标检测实现遥感场景下的车辆检测计数》

《共建共创共享》

《助力森林火情烟雾检测预警,基于YOLOv5全系列模型[n/s/m/l/x]开发构建无人机航拍场景下的森林火情检测识别系统》

《UAV 无人机检测实践分析》

《助力森林火情预警检测,基于YOLOv7-tiny、YOLOv7和YOLOv7x开发构建无人机航拍场景下的森林火情检测是别预警系统》

 《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv5开发构建电力设备螺母缺销小目标检测识别系统》

《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv7开发构建电力设备螺母缺销小目标检测识别系统》

前面因为时间、资源等因素的限制我们没有办法对YOLOv8全系列不同参数的模型进行全面的对比分析,仅仅开发了最为轻量级的n系列的模型,感兴趣的话可以自行移步阅读即可: 

《实践航拍小目标检测,基于轻量级YOLOv8n开发构建无人机航拍场景下的小目标检测识别分析系统》

本文的内容则是围绕开发YOLOv8全系列五款不同参数量级的模型来进行整体的对比分析。

首先看下实例效果:

简单看下实例数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里给出yolov8的模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 10  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

实验阶段保持着完全相同的参数设置,开发完成五款不同参数量级的模型来进行综合全面的对比分析,等待训练完成后我们来详细看下结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【loss】

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

综合实验对比结果来看:五款不同参数量级的模型效果层次分明,不难看出n系列的模型效果最差,被其他几款模型拉开了明显的差距,s系列的模型性能次之,优于n系列的模型但是与其他3款模型依旧有明显的差距,m系列模型效果居中不过依旧落后于l和x系列的模型,l系列的模型稍落后于x系列的模型,x系列的模型效果最优,结合参数量考虑最终线上考虑使用l系列的模型来作为最终的推理模型。

接下来看下l系列的模型详情:
【离线推理实例】

【Batch实例】

【训练可视化】

【PR曲线】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715531.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 llama.cpp 在本地部署 AI 大模型的一次尝试

对于刚刚落下帷幕的2023年,人们曾经给予其高度评价——AIGC元年。随着 ChatGPT 的火爆出圈,大语言模型、AI 生成内容、多模态、提示词、量化…等等名词开始相继频频出现在人们的视野当中,而在这场足以引发第四次工业革命的技术浪潮里,人们对于人工智能的态度,正从一开始的…

JVM(5)

垃圾回收相关 垃圾收集器 警告:纯八股文! 如果说上面我们讲的收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体体现. 垃圾收集器的作用:垃圾收集器是为了保证程序能够正常,持久运行的一种技术,它是将程序中不用的死亡对象也就是垃圾对象进行清除,从而保证新的…

第四十五天| 322. 零钱兑换、279.完全平方数

Leetcode 322. 零钱兑换 题目链接:322 零钱兑换 题干:给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能…

AI大语言模型【成像光谱遥感技术】ChatGPT应用指南

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用,人工智能…

vscode + git

写在前面: origin分支: 当我们在使用git clone的时候,git会自动地将这个远程的repo命名为origin,拉取它所有的数据之后,创建一个指向它master的指针,命名为origin/master,之后会在本地创建一个…

#WEB前端(HTML属性)

1.实验:a,img 2.IDE:VSCODE 3.记录: a: href插入超链接 默认情况下在本窗口打开链接, target可以设置打开的窗口,parent在父窗口打开,blank新开串口打开,top在顶层串口打开,self为默认在本窗口打开 img: 插入图片 可以插…

解析/区分MOS管的三个引脚G、S、D(NMOS管和PMOS管)

MOS管的三个引脚分别是Gate(栅极)、Source(源极)和Drain(漏极)。以下是详细介绍: Gate(栅极)。这是控制MOS管开关的关键引脚,用于控制电流的流通。Source&…

智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用

TSINGSEE青犀视频智能分析网关V4内置了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,上报识别结果,并能进行语音告警播放。硬件管理平台支持RTSP、GB28181协议、以及厂家私有协议接入,可兼容市面上常…

【DDD】学习笔记-实体和值对象:从领域模型的基础单元看系统设计

今天我们来学习 DDD 战术设计中的两个重要概念:实体和值对象。 这两个概念都是领域模型中的领域对象。它们在领域模型中起什么作用,战术设计时如何将它们映射到代码和数据模型中去?就是我们这一讲重点要关注的问题。 另外,在战略…

springboot238光影视频

光影视频平台 摘 要 使用旧方法对光影视频平台的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在光影视频平台的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开…

wy的leetcode刷题记录_Day80

wy的leetcode刷题记录_Day80 声明 本文章的所有题目信息都来源于leetcode 如有侵权请联系我删掉! 时间:2024-3-2 前言 目录 wy的leetcode刷题记录_Day80声明前言2368. 受限条件下可到达节点的数目题目介绍思路代码收获 92. 反转链表 II题目介绍思路代码收获 2368…

Redis持久化+Redis内存管理和优化+Redis三大缓存问题

Redis持久化Redis内存管理和优化Redis三大缓存问题一、Redis高可用二、Redis持久化1、RDB持久化1.1 触发条件(1) 手动触发(2) 自动触发(3) 其他自动触发机制 1.2 执行流程1.3 启动时加载 2、AOF持久化2.1 开启AOF2.2 执行流程(1) 命令追加(append)(2) 文件写入(write)和文件同步…

langchain学习笔记(十)

Bind runtime args | 🦜️🔗 Langchain 1、有时,我们希望使用常量参数调用Runnable序列中的Runnable,这些参数不是序列中前一个Runnable的输出的一部分,也不是用户的输入,这时可以用Runnable.bind() from …

关于synchronized介绍

synchronized的特性 1. 乐观锁/悲观锁自适应,开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁 2.轻量级/重量级锁自适应 开始是轻量级锁实现,如果锁被持有的时间较长,就转换成重量级锁 3.自旋/挂起等待锁自适应 4.不是读写锁 5.非公平锁 6,可重入锁 synchronized的使用 1&#…

2024家用洗地机品牌推荐!洗地机选什么牌子好?建议选择这几款

如今生活节奏加快,工作繁忙的上班族很少有时间做家务。即使抽出时间打扫,也难以保持家庭长久干净整洁。许多人听说了智能化家居神器——洗地机,想要入手一台。但在市场上各种洗地机层出不穷,很多人不知如何选择。下面是我给大家整…

降低85%的gc发生率:ES的GC调优实践!

#大数据/ES #经验 #性能 ES的服务日志出现一些gc overhead现象,经过调优对比,gc发生率显著下降了85%,分享参数如下: ES的G1GC参数(多实例) -XX:UseG1GC -XX:MaxGCPauseMillis200 -XX:InitiatingHeapOccu…

Redis缓存双写一致性之更新策略

文章目录 1. 经典面试题2. 双写一致性3. 更新策略4. canal简介5. Redis与Mysql数据双写一致性工程落地案例 1. 经典面试题 上面的业务逻辑你用java代码如何实现?你只要用缓存,就可能会涉及到redis缓存与数据库双存储双写,你只要是双写&#x…

嵌入式学习day29 指针复习

1.指针: 1.提供一种间接访问数据的方法 2.空间没有名字,只有一个地址编号 2.指针: 1.地址:区分不同内存空间的编号 2.指针:指针就是地址,地址就是指针 3.指针变量:存放指针的变量称为指针变量,简称为指针 3.指针的定义: int *p NULL; …

MyBatis中 #{} 和 ${} 区别

Mybatis的Mapper映射文件中,有两种方式可以引用形参变量进行取值: #{} 和 ${}。本文将简述两种方式的区别和适用场景 取值引用 #{} 方式 #{}: 解析为SQL时,会将形参变量的值取出,并自动给其添加引号。 例如:当实参username&quo…

学习助手:借助AI大模型,学习更高效!

在当今的数字时代,人工智能(AI)的崛起已经彻底改变了我们获取信息、处理数据以及学习新知识的方式。AI大模型,特别是如OpenAI开发的GPT-4这类先进的技术,已成为学习和教育领域的一大助力。本文旨在探索如何借助AI大模型…