使用 llama.cpp 在本地部署 AI 大模型的一次尝试

对于刚刚落下帷幕的2023年,人们曾经给予其高度评价——AIGC元年。随着 ChatGPT 的火爆出圈,大语言模型、AI 生成内容、多模态、提示词、量化…等等名词开始相继频频出现在人们的视野当中,而在这场足以引发第四次工业革命的技术浪潮里,人们对于人工智能的态度,正从一开始的惊喜慢慢地变成担忧。因为 AI 在生成文字、代码、图像、音频和视频等方面的能力越来越强大,强大到需要 “冷门歌手” 孙燕姿亲自发文回应,强大到连山姆·奥特曼都被 OpenAI 解雇。在经历过 OpenAI 套壳、New Bing、GitHub Copilot 以及各式 AI 应用、各类大语言模型的持续轰炸后,我们终于迎来了人工智能的 “安卓时刻”,即除了 ChatGPT、Gemini 等专有模型以外,我们现在有更多的开源大模型可以选择。可这难免会让我们感到困惑,人工智能的尽头到底是什么呢?2013年的时候,我以为未来属于提示词工程(Prompt Engineering),可后来好像是 RAG 以及 GPTs 更受欢迎?

从哪里开始

在经历过早期调用 OpenAI API 各种障碍后,我觉得大语言模型,最终还是需要回归到私有化部署这条路上来。毕竟,连最近新上市的手机都开始内置大语言模型了,我先后在手机上体验了有大语言模型加持的小爱同学,以及抖音的豆包,不能说体验有多好,可终归是聊胜于无。目前,整个人工智能领域大致可以分为三个层次,即:算力、模型和应用。其中,算力,本质上就是芯片,对大模型来说特指高性能显卡;模型,现在在 Hugging Face 可以找到各种开源的模型,即便可以节省训练模型的成本,可对这些模型的微调和改进依然是 “最后一公里” 的痛点;应用,目前 GPTs 极大地推动了各类 AI 应用的落地,而像 Poe 这类聚合式的 AI 应用功能要更强大一点。最终,我决定先在 CPU 环境下利用 llama.cpp 部署一个 AI 大模型,等打通上下游关节后,再考虑使用 GPU 环境实现最终落地。从头开始训练一个模型是不大现实的,可如果通过 LangChain 这类框架接入本地知识库还是有希望的。

编译 llama.cpp

llama.cpp 是一个纯 C/C++ 实现的 LLaMA 模型推理工具,由于其具有极高的性能,因此,它可以同时在 GPU 和 CPU 环境下运行,这给了像博主这种寻常百姓可操作的空间。在 Meta 半开源了其 LLaMA 模型以后,斯坦福大学发布了其基于 LLaMA-7B 模型微调而来的模型 Alpaca,在开源社区的积极响应下,在 Hugging Face 上面相继衍生出了更多的基于 LLaMA 模型的模型,这意味着这些由 LLaMA 衍生而来的模型,都可以交给 llama.cpp 这个项目来进行推理。对硬件要求低、可供选择的模型多,这是博主选择 llama.cpp 的主要原因。在这篇文章里,博主使用的是一台搭配 i7-1360P 处理器、32G 内存的笔记本,按照 LLaMA 的性能要求,运行 GGML 格式的 7B 模型至少需要 13G 内存,而运行 GGML 格式的 13B 模型至少需要 24G 内存,大家可以根据自身配置选择合适的模型,个人建议选择 7B 即可,因为 13B 运行时间一长以后还是会感到吃力,哎😰。

在这里插入图片描述

准备工作

在正式开始前,请确保你可以熟练使用 Git,以及具备科学上网的条件,因为我们需要从 Hugging Face 上下载模型。此外,你还需要下载并安装以下软件:

  • Python: 官方网站、华为镜像,建议选择 3.9 及其以上版本
  • w64devkit:便携式 C/C++ 编译环境,集成了 gcc、make 等常见的工具
  • OpenBLAS(可选): 可以提供 CPU 加速的高性能矩阵计算库,建议安装

w64devkit 和 OpenBLAS 下载下来都是压缩包,直接解压即可,建议将 w64devkit 解压在一个不含空格和中文的路径下,例如:C:\w64devkit。接下来,我们还需要 OpenBLAS 的库文件和头文件,请将其 include 目录下的内容,全部复制到 C:\w64devkit\x86_64-w64-mingw32\include 目录下;请将其 lib 目录下的 libopenblas.a 文件复制到 C:\w64devkit\x86_64-w64-mingw32\lib 目录下。保险起见,个人建议将 C:\w64devkit 目录添加到 Path 环境变量中,如下图所示:

在这里插入图片描述

至此,我们就完成了全部的准备工作。需要说明的是,这里是以 Windows + Make + OpenBLAS 为例进行演示和写作。如果你是 Mac 或者 Linux 系统用户,或者你想 CMake 或者 CUDA,请参考官方文档:https://github.com/ggerganov/llama.cpp,虽然这份文档是纯英文的,但是我相信这应该难不倒屏幕前的各位程序员朋友,哈哈😄。

编译过程

好的,对于 llama.cpp 而言,其实官方提供了预编译的可执行程序,具体请参考这里:https://github.com/ggerganov/llama.cpp/releases。通常情况下,普通的 Windows 用户只需要选择类似 llama-b2084-bin-win-openblas-x64.zip 这样的发行版本即可。如果你拥有高性能显卡,可以选择类似 llama-b2084-bin-win-cublas-cu12.2.0-x64.zip 这样的发行版即可,其中的 cu 表示 CUDA,这是由显卡厂商 Nvdia 推出的运算平台。什么样的显卡算高性能显卡呢?就我朴实无华的游戏史观点而言,只要能流畅运行育碧旗下的《刺客信条:大革命》及其后续作品的,都可以算得上高性能显卡。这里,我们选择手动编译,因为通读整个文档你就会发现,llama.cpp 里面提供了大量的编译参数,这些参数或多或少地会影响到你编译的产物。所以&#x

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM(5)

垃圾回收相关 垃圾收集器 警告:纯八股文! 如果说上面我们讲的收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体体现. 垃圾收集器的作用:垃圾收集器是为了保证程序能够正常,持久运行的一种技术,它是将程序中不用的死亡对象也就是垃圾对象进行清除,从而保证新的…

第四十五天| 322. 零钱兑换、279.完全平方数

Leetcode 322. 零钱兑换 题目链接:322 零钱兑换 题干:给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能…

AI大语言模型【成像光谱遥感技术】ChatGPT应用指南

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用,人工智能…

vscode + git

写在前面: origin分支: 当我们在使用git clone的时候,git会自动地将这个远程的repo命名为origin,拉取它所有的数据之后,创建一个指向它master的指针,命名为origin/master,之后会在本地创建一个…

#WEB前端(HTML属性)

1.实验:a,img 2.IDE:VSCODE 3.记录: a: href插入超链接 默认情况下在本窗口打开链接, target可以设置打开的窗口,parent在父窗口打开,blank新开串口打开,top在顶层串口打开,self为默认在本窗口打开 img: 插入图片 可以插…

解析/区分MOS管的三个引脚G、S、D(NMOS管和PMOS管)

MOS管的三个引脚分别是Gate(栅极)、Source(源极)和Drain(漏极)。以下是详细介绍: Gate(栅极)。这是控制MOS管开关的关键引脚,用于控制电流的流通。Source&…

智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用

TSINGSEE青犀视频智能分析网关V4内置了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,上报识别结果,并能进行语音告警播放。硬件管理平台支持RTSP、GB28181协议、以及厂家私有协议接入,可兼容市面上常…

【DDD】学习笔记-实体和值对象:从领域模型的基础单元看系统设计

今天我们来学习 DDD 战术设计中的两个重要概念:实体和值对象。 这两个概念都是领域模型中的领域对象。它们在领域模型中起什么作用,战术设计时如何将它们映射到代码和数据模型中去?就是我们这一讲重点要关注的问题。 另外,在战略…

springboot238光影视频

光影视频平台 摘 要 使用旧方法对光影视频平台的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在光影视频平台的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开…

wy的leetcode刷题记录_Day80

wy的leetcode刷题记录_Day80 声明 本文章的所有题目信息都来源于leetcode 如有侵权请联系我删掉! 时间:2024-3-2 前言 目录 wy的leetcode刷题记录_Day80声明前言2368. 受限条件下可到达节点的数目题目介绍思路代码收获 92. 反转链表 II题目介绍思路代码收获 2368…

Redis持久化+Redis内存管理和优化+Redis三大缓存问题

Redis持久化Redis内存管理和优化Redis三大缓存问题一、Redis高可用二、Redis持久化1、RDB持久化1.1 触发条件(1) 手动触发(2) 自动触发(3) 其他自动触发机制 1.2 执行流程1.3 启动时加载 2、AOF持久化2.1 开启AOF2.2 执行流程(1) 命令追加(append)(2) 文件写入(write)和文件同步…

langchain学习笔记(十)

Bind runtime args | 🦜️🔗 Langchain 1、有时,我们希望使用常量参数调用Runnable序列中的Runnable,这些参数不是序列中前一个Runnable的输出的一部分,也不是用户的输入,这时可以用Runnable.bind() from …

关于synchronized介绍

synchronized的特性 1. 乐观锁/悲观锁自适应,开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁 2.轻量级/重量级锁自适应 开始是轻量级锁实现,如果锁被持有的时间较长,就转换成重量级锁 3.自旋/挂起等待锁自适应 4.不是读写锁 5.非公平锁 6,可重入锁 synchronized的使用 1&#…

2024家用洗地机品牌推荐!洗地机选什么牌子好?建议选择这几款

如今生活节奏加快,工作繁忙的上班族很少有时间做家务。即使抽出时间打扫,也难以保持家庭长久干净整洁。许多人听说了智能化家居神器——洗地机,想要入手一台。但在市场上各种洗地机层出不穷,很多人不知如何选择。下面是我给大家整…

降低85%的gc发生率:ES的GC调优实践!

#大数据/ES #经验 #性能 ES的服务日志出现一些gc overhead现象,经过调优对比,gc发生率显著下降了85%,分享参数如下: ES的G1GC参数(多实例) -XX:UseG1GC -XX:MaxGCPauseMillis200 -XX:InitiatingHeapOccu…

Redis缓存双写一致性之更新策略

文章目录 1. 经典面试题2. 双写一致性3. 更新策略4. canal简介5. Redis与Mysql数据双写一致性工程落地案例 1. 经典面试题 上面的业务逻辑你用java代码如何实现?你只要用缓存,就可能会涉及到redis缓存与数据库双存储双写,你只要是双写&#x…

嵌入式学习day29 指针复习

1.指针: 1.提供一种间接访问数据的方法 2.空间没有名字,只有一个地址编号 2.指针: 1.地址:区分不同内存空间的编号 2.指针:指针就是地址,地址就是指针 3.指针变量:存放指针的变量称为指针变量,简称为指针 3.指针的定义: int *p NULL; …

MyBatis中 #{} 和 ${} 区别

Mybatis的Mapper映射文件中,有两种方式可以引用形参变量进行取值: #{} 和 ${}。本文将简述两种方式的区别和适用场景 取值引用 #{} 方式 #{}: 解析为SQL时,会将形参变量的值取出,并自动给其添加引号。 例如:当实参username&quo…

学习助手:借助AI大模型,学习更高效!

在当今的数字时代,人工智能(AI)的崛起已经彻底改变了我们获取信息、处理数据以及学习新知识的方式。AI大模型,特别是如OpenAI开发的GPT-4这类先进的技术,已成为学习和教育领域的一大助力。本文旨在探索如何借助AI大模型…

了解 SYN Flood 攻击

文章目录: 什么是 SYN Flood 攻击?对网络的影响SYN Flood 发生的迹象如何解决? 什么是 SYN Flood 攻击? SYN Flood(SYN 洪水攻击)是一种常见的分布式拒绝服务(DDoS - Distributed Denial of Se…