AI大语言模型【成像光谱遥感技术】ChatGPT应用指南

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。ChatGPT先进人工智能模型的开发,开辟了该领域的新领域。本文全面介绍ChatGPT先进人工智能的基本概念及其在遥感中的应用。

本文的主要亮点是实用性。从数据分析到预测建模,该文为遥感项目中集成人工智能工具提供了一种清晰而系统的方法。随着课程的展开,将向学习者介绍各种案例研究和项目,展示人工智能在遥感中的实际应用。这些例子不仅可以说明所讨论的概念,而且可以启发学生在自己的项目和研究中的创新思维和应用

本文的另一个突出特点是它深入讲解了ChatGPT在遥感领域科学研究中的应用。ChatGPT如何彻底改变你总结研究结果、起草和完善文章的方式,帮助完成复杂的数据结果的可视化。它展示了人工智能在提高遥感领域论文编写和数据可视化的效率和质量方面的实际效果。无论你是在编写研究摘要、起草论文发表,还是寻求更有效地展示你的数据,ChatGPT都是一个强大的工具,可以简化这些流程,提高你的工作标准。

最后,“遥感科学中的人工智能革命:ChatGPT应用指南”课程为我们打开了一扇窗户,让我们了解应用人工智能技术来改变遥感科学研究和应用的可能性。它突出了人工智能和遥感科学的融合,展示了我们在理解地球和与地球互动方面取得重大进展的潜力。本文是一次探索、技能提升和实际应用的旅程,为学习者站在这场技术革命的前沿奠定基础。

点击查看全文

第一章、遥感科学与AI基础

第一节:遥感科学的基本原理和历史

从摄影侦察到卫星图像

遥感的基本原理

遥感的典型应用

最新进展和未来趋势

第二节:ChatGPT 简介

什么是ChatGPT?

发展简史和工作原理

ChatGPT可以做什么?

ChatGPT演示使用

ChatGPT的未来

第三节:prompt 提示词

什么是prompt,有什么用?

Prompt技巧(大几岁)

最好的原则和策略

优质的学术提问prompt

第四节:ChatGPT遥感提示词示例

提示词1:了解遥感科学的基础知识和前沿领域

提示词2:编写一段可以运行的深度学习代码

提示词3:编写可以读取遥感数据的python代码

提示词4:集成chatpgt和GEE的全球卫星影像显示

第五节:ChatGPT遥感应用介绍

目标层面(文献综述协助、创意生成、研发方案和任务规划起草)

执行层面(数据处理分析、工作流程优化、报告文章编写、可视化)

认知层面(数据挖掘、新算法、传感器改进建议、人工智能与遥感集成新方法)

第六节:ChatGPT、GEE等注册、python、envi等软件安装

ChatGPT 注册方法,升级方法,版本比较 GEE 注册python、envi等软件安装ChatGPT、GEE学习资源分享

第二章、遥感影像数据处理分析软件与chatgpt集成

第一节:遥感影像处理(ENVI+chatgpt)

遥感数据类型和处理流程

预处理技术

图像特征提取

图像分类

多光谱、高光谱分析

Chatgpt辅助下envi遥感数据处理

第二节:Python遥感影像处理基础

Python简介

变量和数据类型

控制结构

功能和模块

文件、包、环境

栅格数据处理

第三节:Python与chatgpt集成

遥感影像读取和元数据分析

基本影像处理操作,如裁剪、重采样

变量和数据类型

遥感影像的可视化

第四节:GEE 基础

GEE的介绍和操做界面

Javascripe 基础

GEE两种模式客户端与服务端的区别

GEE遥感影像数据集及操做

GEE遥感数据导入导出

GEE 图像分类

第五节:chatgpt与GEE集成

Chatgpt与GEE集成使用示例(NDVI)

Chatgpt与GEE下载数据

Chatgpt与GEE遥感数据预处理

Chatgpt与GEE 图像分类

第六节:高级分析技术(机器学习、深度学习)

机器学习与sciki learn 介绍

数据和算法选择

通用学习流程

遥感机器学习模型

​​

第三章、多光谱数据分析与实践专题

第一节:多光谱遥感基本概念与数据

多光谱遥感基本概念;

多光谱遥感的主要卫星数据源介绍及下载方法(哨兵、Landsat、Aster、Modis等)

ChatGPT应用:解释波段选择的重要性和多光谱数据的解读。

第二节:基于chatgpt和python的多光谱数据分析基础

基于chatgpt和python的多光谱数据预处理方法

基于chatgpt和python的多光谱数据分类方法

基于chatgpt和python多光谱数据重组整理、机器学习模型构建、训练方法

第三节:chatgpt+GEE 多光谱应用案例

干旱指数计算案例

洪水监测案例

城市绿地提取和分析案例

​​

第四章、高光谱分析与实践专题

第一节:高光谱遥感基本概念

高光谱遥感、光的波长、光谱分辨率

高光谱遥感的历史和发展

高光谱数据预处理

地物识别与光谱特征

混合像元分解

第二节:chatgpt+python 高光谱数据处理

数据读取与显示

光谱特征提取

混合像元分解

高光谱图像分类

高光谱参量反演

第三节:chatgpt+python 高光谱应用案例

矿物填图案例

农作物分类案例

土壤含水量评估案例

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680471&idx=4&sn=8382e13ca0c0becaa32d8dd737070952&chksm=fa775eeacd00d7fca83fdd97dfcb540893356370fc810b328063a58246c74bc7ab19c718ec00&token=936512705&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode + git

写在前面: origin分支: 当我们在使用git clone的时候,git会自动地将这个远程的repo命名为origin,拉取它所有的数据之后,创建一个指向它master的指针,命名为origin/master,之后会在本地创建一个…

C#单向链表实现:用泛型类在当前位置插入新数据的方法Insert()

一、涉及到的知识点 1.ListNode<T>类 ListNode<T>是一个泛型类&#xff0c;用于表示链表中的一个节点。Value和Next属性是ListNode<T>最基本的属性&#xff0c;用于表示节点的值和指向下一个节点的引用。但是&#xff0c;完全可以根据实际需求添加其他属性&…

双非二本找实习前的准备day5

学习目标&#xff1a; 每天2-3到简单sql&#xff08;刷完即止&#xff09;&#xff0c;每天复习代码随想录上的题目3道算法&#xff08;时间充足可以继续&#xff09;&#xff0c;今天的八股背少一点&#xff0c;MySQL和Redis各1-2道好了&#xff0c;主攻复习是java基础 今日…

C语言5道编程题简单介绍(三)

1、打印杨辉三角 程序分析&#xff1a; 结构如下所示&#xff1a; 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1代码如下&#xff1a; #include <stdio.h>int main() {int i,j;int a[10][10];printf("\n");for(i0;i<10;i) {a[i][0]1;a…

Vuex 是什么?它在 Vue 应用中扮演什么角色?解释一下 Vuex 的状态管理模式。如何在 Vuex 中进行异步操作?

一、Vuex 是什么&#xff1f; Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。Vuex 的出现解决了多个组件间共享状态的问题&#xff0c;使得状态管理变得更加直…

#WEB前端(HTML属性)

1.实验&#xff1a;a,img 2.IDE&#xff1a;VSCODE 3.记录&#xff1a; a: href插入超链接 默认情况下在本窗口打开链接, target可以设置打开的窗口,parent在父窗口打开&#xff0c;blank新开串口打开,top在顶层串口打开,self为默认在本窗口打开 img: 插入图片 可以插…

解析/区分MOS管的三个引脚G、S、D(NMOS管和PMOS管)

MOS管的三个引脚分别是Gate&#xff08;栅极&#xff09;、Source&#xff08;源极&#xff09;和Drain&#xff08;漏极&#xff09;。以下是详细介绍&#xff1a; Gate&#xff08;栅极&#xff09;。这是控制MOS管开关的关键引脚&#xff0c;用于控制电流的流通。Source&…

智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用

TSINGSEE青犀视频智能分析网关V4内置了近40种AI算法模型&#xff0c;支持对接入的视频图像进行人、车、物、行为等实时检测分析&#xff0c;上报识别结果&#xff0c;并能进行语音告警播放。硬件管理平台支持RTSP、GB28181协议、以及厂家私有协议接入&#xff0c;可兼容市面上常…

【DDD】学习笔记-实体和值对象:从领域模型的基础单元看系统设计

今天我们来学习 DDD 战术设计中的两个重要概念&#xff1a;实体和值对象。 这两个概念都是领域模型中的领域对象。它们在领域模型中起什么作用&#xff0c;战术设计时如何将它们映射到代码和数据模型中去&#xff1f;就是我们这一讲重点要关注的问题。 另外&#xff0c;在战略…

springboot238光影视频

光影视频平台 摘 要 使用旧方法对光影视频平台的信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运用在光影视频平台的管理上面可以解决许多信息管理上面的难题&#xff0c;比如处理数据时间很长&#xff0c;数据存在错误不能及时纠正等问题。这次开…

APS面试审核准备的常规问题

之前根据其他人的经验贴&#xff0c;准备了一些可能APS 面试审核可能会遇到的常规问题&#xff0c;现在简单分享一下。 一般会考虑到留学资金来源&#xff0c;在德国能不能顺利毕业&#xff1b;学的是什么专业内容之类的&#xff0c;判断去德国会不会好好学习&#xff1b;对德国…

Linux:上传文件到虚拟机

常见的方法&#xff1a; 使用虚拟机软件提供的文件共享功能&#xff1a; 对于VMware Workstation&#xff0c;可以使用“共享文件夹”功能。对于VirtualBox&#xff0c;可以使用“共享文件夹”或“拖放”功能。 使用网络文件共享服务&#xff1a; 您可以在虚拟机中配置一个Sam…

【Python入门教程】Python实现鸡兔同笼

今天跟大家分享一下很久之前自己做的鸡兔同笼求解问题的小游戏&#xff0c;使用公式和基本的判断语句即可实现&#xff0c;可以用来当练手或者消磨时间用。 大家在编代码的时候最重要就是先理清逻辑思路&#xff0c;例如应该套几层循环、分几个模块等等。然后在编码时可以先随意…

TS中符号的用法:?、??、 !、 !!

1) ? 的用法 示例&#xff1a; const obj res?.data || {}; // obj是从接口中取到的数据const dataError obj.a.b; // 若obj为空&#xff0c;则此时会报错const dataSafe obj?.a?.b; // 相当于 const dataSafe obj && obj.a && obj.a.b ? obj.a.b…

wy的leetcode刷题记录_Day80

wy的leetcode刷题记录_Day80 声明 本文章的所有题目信息都来源于leetcode 如有侵权请联系我删掉! 时间&#xff1a;2024-3-2 前言 目录 wy的leetcode刷题记录_Day80声明前言2368. 受限条件下可到达节点的数目题目介绍思路代码收获 92. 反转链表 II题目介绍思路代码收获 2368…

Redis持久化+Redis内存管理和优化+Redis三大缓存问题

Redis持久化Redis内存管理和优化Redis三大缓存问题一、Redis高可用二、Redis持久化1、RDB持久化1.1 触发条件(1) 手动触发(2) 自动触发(3) 其他自动触发机制 1.2 执行流程1.3 启动时加载 2、AOF持久化2.1 开启AOF2.2 执行流程(1) 命令追加(append)(2) 文件写入(write)和文件同步…

读书笔记-三国演义-荆州争夺

荆州争夺 赤壁之战后&#xff0c;荆州成为蜀汉、曹魏和孙吴三方争夺的焦点。刘备、曹操和孙权相继占据荆州&#xff0c;展开了一系列激烈的军事冲突和政治斗争。 赤壁之战后的荆州争夺是三国时期曹操、刘备和孙权之间的一场激烈竞争&#xff0c;是继赤壁之战后三方势力之间的…

网络编程笔记

网络编程 1.网络编程常用工具 1.扫描器 每一个网络编程者手中都有一两个用得顺手的扫描器&#xff0c;扫描器在一个老练的网络编程者手里有着相当大的作用。利用扫描器&#xff0c;网络编程者可以对某一网段的机器或是某台目标机器进行快速漏洞扫描&#xff0c;因为传统的手…

langchain学习笔记(十)

Bind runtime args | &#x1f99c;️&#x1f517; Langchain 1、有时&#xff0c;我们希望使用常量参数调用Runnable序列中的Runnable&#xff0c;这些参数不是序列中前一个Runnable的输出的一部分&#xff0c;也不是用户的输入&#xff0c;这时可以用Runnable.bind() from …

关于synchronized介绍

synchronized的特性 1. 乐观锁/悲观锁自适应,开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁 2.轻量级/重量级锁自适应 开始是轻量级锁实现,如果锁被持有的时间较长,就转换成重量级锁 3.自旋/挂起等待锁自适应 4.不是读写锁 5.非公平锁 6,可重入锁 synchronized的使用 1&#…