AI大语言模型【成像光谱遥感技术】ChatGPT应用指南

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用,人工智能在解释复杂数据、提供见解和帮助决策过程方面的多功能性和强大性,这些都对遥感应用领域,比如环境监测、灾害管理、城市规划等至关重要。ChatGPT先进人工智能模型的开发,开辟了该领域的新领域。本文全面介绍ChatGPT先进人工智能的基本概念及其在遥感中的应用。

本文的主要亮点是实用性。从数据分析到预测建模,该文为遥感项目中集成人工智能工具提供了一种清晰而系统的方法。随着课程的展开,将向学习者介绍各种案例研究和项目,展示人工智能在遥感中的实际应用。这些例子不仅可以说明所讨论的概念,而且可以启发学生在自己的项目和研究中的创新思维和应用

本文的另一个突出特点是它深入讲解了ChatGPT在遥感领域科学研究中的应用。ChatGPT如何彻底改变你总结研究结果、起草和完善文章的方式,帮助完成复杂的数据结果的可视化。它展示了人工智能在提高遥感领域论文编写和数据可视化的效率和质量方面的实际效果。无论你是在编写研究摘要、起草论文发表,还是寻求更有效地展示你的数据,ChatGPT都是一个强大的工具,可以简化这些流程,提高你的工作标准。

最后,“遥感科学中的人工智能革命:ChatGPT应用指南”课程为我们打开了一扇窗户,让我们了解应用人工智能技术来改变遥感科学研究和应用的可能性。它突出了人工智能和遥感科学的融合,展示了我们在理解地球和与地球互动方面取得重大进展的潜力。本文是一次探索、技能提升和实际应用的旅程,为学习者站在这场技术革命的前沿奠定基础。

点击查看全文

第一章、遥感科学与AI基础

第一节:遥感科学的基本原理和历史

从摄影侦察到卫星图像

遥感的基本原理

遥感的典型应用

最新进展和未来趋势

第二节:ChatGPT 简介

什么是ChatGPT?

发展简史和工作原理

ChatGPT可以做什么?

ChatGPT演示使用

ChatGPT的未来

第三节:prompt 提示词

什么是prompt,有什么用?

Prompt技巧(大几岁)

最好的原则和策略

优质的学术提问prompt

第四节:ChatGPT遥感提示词示例

提示词1:了解遥感科学的基础知识和前沿领域

提示词2:编写一段可以运行的深度学习代码

提示词3:编写可以读取遥感数据的python代码

提示词4:集成chatpgt和GEE的全球卫星影像显示

第五节:ChatGPT遥感应用介绍

目标层面(文献综述协助、创意生成、研发方案和任务规划起草)

执行层面(数据处理分析、工作流程优化、报告文章编写、可视化)

认知层面(数据挖掘、新算法、传感器改进建议、人工智能与遥感集成新方法)

第六节:ChatGPT、GEE等注册、python、envi等软件安装

ChatGPT 注册方法,升级方法,版本比较 GEE 注册python、envi等软件安装ChatGPT、GEE学习资源分享

第二章、遥感影像数据处理分析软件与chatgpt集成

第一节:遥感影像处理(ENVI+chatgpt)

遥感数据类型和处理流程

预处理技术

图像特征提取

图像分类

多光谱、高光谱分析

Chatgpt辅助下envi遥感数据处理

第二节:Python遥感影像处理基础

Python简介

变量和数据类型

控制结构

功能和模块

文件、包、环境

栅格数据处理

第三节:Python与chatgpt集成

遥感影像读取和元数据分析

基本影像处理操作,如裁剪、重采样

变量和数据类型

遥感影像的可视化

第四节:GEE 基础

GEE的介绍和操做界面

Javascripe 基础

GEE两种模式客户端与服务端的区别

GEE遥感影像数据集及操做

GEE遥感数据导入导出

GEE 图像分类

第五节:chatgpt与GEE集成

Chatgpt与GEE集成使用示例(NDVI)

Chatgpt与GEE下载数据

Chatgpt与GEE遥感数据预处理

Chatgpt与GEE 图像分类

第六节:高级分析技术(机器学习、深度学习)

机器学习与sciki learn 介绍

数据和算法选择

通用学习流程

遥感机器学习模型

​​

第三章、多光谱数据分析与实践专题

第一节:多光谱遥感基本概念与数据

多光谱遥感基本概念;

多光谱遥感的主要卫星数据源介绍及下载方法(哨兵、Landsat、Aster、Modis等)

ChatGPT应用:解释波段选择的重要性和多光谱数据的解读。

第二节:基于chatgpt和python的多光谱数据分析基础

基于chatgpt和python的多光谱数据预处理方法

基于chatgpt和python的多光谱数据分类方法

基于chatgpt和python多光谱数据重组整理、机器学习模型构建、训练方法

第三节:chatgpt+GEE 多光谱应用案例

干旱指数计算案例

洪水监测案例

城市绿地提取和分析案例

​​

第四章、高光谱分析与实践专题

第一节:高光谱遥感基本概念

高光谱遥感、光的波长、光谱分辨率

高光谱遥感的历史和发展

高光谱数据预处理

地物识别与光谱特征

混合像元分解

第二节:chatgpt+python 高光谱数据处理

数据读取与显示

光谱特征提取

混合像元分解

高光谱图像分类

高光谱参量反演

第三节:chatgpt+python 高光谱应用案例

矿物填图案例

农作物分类案例

土壤含水量评估案例

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680471&idx=4&sn=8382e13ca0c0becaa32d8dd737070952&chksm=fa775eeacd00d7fca83fdd97dfcb540893356370fc810b328063a58246c74bc7ab19c718ec00&token=936512705&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/715527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode + git

写在前面: origin分支: 当我们在使用git clone的时候,git会自动地将这个远程的repo命名为origin,拉取它所有的数据之后,创建一个指向它master的指针,命名为origin/master,之后会在本地创建一个…

#WEB前端(HTML属性)

1.实验:a,img 2.IDE:VSCODE 3.记录: a: href插入超链接 默认情况下在本窗口打开链接, target可以设置打开的窗口,parent在父窗口打开,blank新开串口打开,top在顶层串口打开,self为默认在本窗口打开 img: 插入图片 可以插…

解析/区分MOS管的三个引脚G、S、D(NMOS管和PMOS管)

MOS管的三个引脚分别是Gate(栅极)、Source(源极)和Drain(漏极)。以下是详细介绍: Gate(栅极)。这是控制MOS管开关的关键引脚,用于控制电流的流通。Source&…

智能分析网关V4安全帽检测/反光衣检测/通用工服检测算法及应用

TSINGSEE青犀视频智能分析网关V4内置了近40种AI算法模型,支持对接入的视频图像进行人、车、物、行为等实时检测分析,上报识别结果,并能进行语音告警播放。硬件管理平台支持RTSP、GB28181协议、以及厂家私有协议接入,可兼容市面上常…

【DDD】学习笔记-实体和值对象:从领域模型的基础单元看系统设计

今天我们来学习 DDD 战术设计中的两个重要概念:实体和值对象。 这两个概念都是领域模型中的领域对象。它们在领域模型中起什么作用,战术设计时如何将它们映射到代码和数据模型中去?就是我们这一讲重点要关注的问题。 另外,在战略…

springboot238光影视频

光影视频平台 摘 要 使用旧方法对光影视频平台的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在光影视频平台的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开…

wy的leetcode刷题记录_Day80

wy的leetcode刷题记录_Day80 声明 本文章的所有题目信息都来源于leetcode 如有侵权请联系我删掉! 时间:2024-3-2 前言 目录 wy的leetcode刷题记录_Day80声明前言2368. 受限条件下可到达节点的数目题目介绍思路代码收获 92. 反转链表 II题目介绍思路代码收获 2368…

Redis持久化+Redis内存管理和优化+Redis三大缓存问题

Redis持久化Redis内存管理和优化Redis三大缓存问题一、Redis高可用二、Redis持久化1、RDB持久化1.1 触发条件(1) 手动触发(2) 自动触发(3) 其他自动触发机制 1.2 执行流程1.3 启动时加载 2、AOF持久化2.1 开启AOF2.2 执行流程(1) 命令追加(append)(2) 文件写入(write)和文件同步…

langchain学习笔记(十)

Bind runtime args | 🦜️🔗 Langchain 1、有时,我们希望使用常量参数调用Runnable序列中的Runnable,这些参数不是序列中前一个Runnable的输出的一部分,也不是用户的输入,这时可以用Runnable.bind() from …

关于synchronized介绍

synchronized的特性 1. 乐观锁/悲观锁自适应,开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁 2.轻量级/重量级锁自适应 开始是轻量级锁实现,如果锁被持有的时间较长,就转换成重量级锁 3.自旋/挂起等待锁自适应 4.不是读写锁 5.非公平锁 6,可重入锁 synchronized的使用 1&#…

2024家用洗地机品牌推荐!洗地机选什么牌子好?建议选择这几款

如今生活节奏加快,工作繁忙的上班族很少有时间做家务。即使抽出时间打扫,也难以保持家庭长久干净整洁。许多人听说了智能化家居神器——洗地机,想要入手一台。但在市场上各种洗地机层出不穷,很多人不知如何选择。下面是我给大家整…

降低85%的gc发生率:ES的GC调优实践!

#大数据/ES #经验 #性能 ES的服务日志出现一些gc overhead现象,经过调优对比,gc发生率显著下降了85%,分享参数如下: ES的G1GC参数(多实例) -XX:UseG1GC -XX:MaxGCPauseMillis200 -XX:InitiatingHeapOccu…

Redis缓存双写一致性之更新策略

文章目录 1. 经典面试题2. 双写一致性3. 更新策略4. canal简介5. Redis与Mysql数据双写一致性工程落地案例 1. 经典面试题 上面的业务逻辑你用java代码如何实现?你只要用缓存,就可能会涉及到redis缓存与数据库双存储双写,你只要是双写&#x…

嵌入式学习day29 指针复习

1.指针: 1.提供一种间接访问数据的方法 2.空间没有名字,只有一个地址编号 2.指针: 1.地址:区分不同内存空间的编号 2.指针:指针就是地址,地址就是指针 3.指针变量:存放指针的变量称为指针变量,简称为指针 3.指针的定义: int *p NULL; …

MyBatis中 #{} 和 ${} 区别

Mybatis的Mapper映射文件中,有两种方式可以引用形参变量进行取值: #{} 和 ${}。本文将简述两种方式的区别和适用场景 取值引用 #{} 方式 #{}: 解析为SQL时,会将形参变量的值取出,并自动给其添加引号。 例如:当实参username&quo…

学习助手:借助AI大模型,学习更高效!

在当今的数字时代,人工智能(AI)的崛起已经彻底改变了我们获取信息、处理数据以及学习新知识的方式。AI大模型,特别是如OpenAI开发的GPT-4这类先进的技术,已成为学习和教育领域的一大助力。本文旨在探索如何借助AI大模型…

了解 SYN Flood 攻击

文章目录: 什么是 SYN Flood 攻击?对网络的影响SYN Flood 发生的迹象如何解决? 什么是 SYN Flood 攻击? SYN Flood(SYN 洪水攻击)是一种常见的分布式拒绝服务(DDoS - Distributed Denial of Se…

购买腾讯云服务器请先领取代金券,2024腾讯云优惠

腾讯云优惠代金券领取入口共三个渠道,腾讯云新用户和老用户均可领取8888元代金券,可用于云服务器等产品购买、续费和升级使用,阿腾云atengyun.com整理腾讯云优惠券(代金券)领取入口、代金券查询、优惠券兑换码使用方法…

FL Studio选购指南:新手小白应该选择哪个版本FL Studio?

很多打算入手正版FL Studio的新手朋友都会纠结一个问题:哪个版本的FL Studio更适合我,到底应该入手哪一款FL Studio?本文会介绍每个版本之间的差异点,并带大家选择适合自己的FL Sudio版本。 FL Studio全版本 在选购前有一些小知识…

什么是MAC地址? win10电脑查看MAC地址的多种方法

您是否知道连接到家庭网络的每件硬件都有自己的身份?正如每个设备都分配有自己的 IP 地址一样,每个硬件都有一个唯一的网络标识符。 该标识符称为MAC 地址。MAC 代表媒体访问控制。您可能需要 MAC 地址来解决网络问题或配置新设备。在 Windows 中查找您…