存内计算技术大幅提升机器学习算法的性能—挑战与解决方案探讨

一.存内计算技术大幅机器学习算法的性能

1.1背景

人工智能技术的迅速发展使人工智能芯片成为备受关注的关键组成部分。在人工智能的构建中,算力是三个支柱之一,包括数据、算法和算力。目前,人工智能芯片的发展主要集中在两个方向:一方面是采用传统计算架构的AI加速器/计算卡,以GPU、FPGA和ASIC为代表;另一方面则是采用颠覆性的冯诺依曼架构,以存算一体芯片为代表。

随着摩尔定律接近极限,传统的器件微缩技术在功耗和可靠性方面面临挑战。冯诺依曼架构已难以满足人工智能计算对算力和低功耗的需求,而存算一体芯片以其独特的架构在算力和能效比方面表现突出。

二.存内计算的优势

传统的计算架构在神经网络训练中存在着数据搬运的瓶颈问题,而存内计算通过在存储单元中嵌入计算单元,实现了计算和存储的无缝衔接。这种融合改变了数据处理的方式,为神经网络的性能提升提供了更为高效的途径。

存内计算的主要优势之一是减少了数据搬运的需求。在传统计算中,由于计算和存储分离,大量的数据需要在两者之间传输,导致了较高的延迟和能耗。而存内计算通过将计算操作直接嵌入存储单元,实现了本地计算,降低了数据搬运的成本,提高了计算效率。

此外,存内计算还在存储设备中引入了更多的智能。通过在存储单元中集成计算单元,可以实现对数据的实时处理和分析,使存储设备更具智能化,更适应复杂的神经网络计算需求。

三. 存内计算与神经网络的结合

3.1 存内计算在神经网络训练中的应用

在神经网络的训练阶段,大量的参数需要不断地进行更新和优化。传统计算中,这些参数通常存储在外部内存中,导致了频繁的数据搬运。而存内计算通过在存储设备中嵌入计算单元,可以直接在存储单元中进行参数更新,减少了数据传输,提高了训练速度。

写一个用于演示神经网络和存内计算的基本概念。

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的神经网络模型
class SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 创建一个模型实例
model = SimpleModel()# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 构造一个简单的训练数据集
inputs = torch.randn((100, 10))
labels = torch.randn((100, 1))# 训练模型
for epoch in range(100):# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 10 == 0:print(f'Epoch {epoch}, Loss: {loss.item()}')# 模型训练完成后,可以使用该模型进行推理
new_data = torch.randn((5, 10))
predictions = model(new_data)
print("Predictions:", predictions)

对上面的代码做一个代码解析:

定义神经网络模型:

  • 使用nn.Module基类创建了一个名为SimpleModel的神经网络模型。
  • 模型有两层全连接层(Linear层),分别是self.fc1self.fc2
  • 输入维度为10,第一层输出维度为5,第二层输出维度为1。
  • 激活函数采用ReLU。

创建模型实例:

  • 实例化了SimpleModel类,得到名为model的模型实例。

定义损失函数和优化器:

  • 使用均方误差损失(nn.MSELoss)作为损失函数。
  • 使用随机梯度下降优化器(optim.SGD)来更新模型参数,学习率为0.01。

构造训练数据集:

  • 生成一个大小为(100, 10)的随机输入数据集inputs
  • 生成一个大小为(100, 1)的随机标签数据集labels

训练模型:

  • 使用一个简单的循环进行训练,循环迭代100次。
  • 在每个迭代中,通过前向传播计算模型的输出。
  • 使用均方误差损失计算输出与标签之间的损失。
  • 使用反向传播更新模型参数,采用随机梯度下降优化器。
  • 每隔10个迭代,打印当前迭代次数和损失值。

模型推理:

  • 创建一个大小为(5, 10)的新数据集new_data
  • 使用训练好的模型对新数据进行推理,得到预测结果predictions

3.2 存内计算在神经网络推理中的应用

在神经网络的推理阶段,存内计算同样展现了其优越性。神经网络模型经过训练后,参数已经固定,此时可以将计算单元直接嵌入存储单元中,实现在存储设备内完成推理过程。这种本地化的计算方式不仅提高了推理的速度,还降低了功耗,使得神经网络在边缘设备上的应用更为高效。

为了更具体地展示存内计算的应用,介绍一个基于PyTorch的简单神经网络加速案例。使用存内计算的概念来优化神经网络的训练过程。

首先,确保已经安装了PyTorch和相关的库:

pip install torch
pip install torchvision

接下来,我们将通过修改之前的简单模型代码,引入存内计算的思想:

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个使用存内计算的神经网络模型
class AcceleratedModel(nn.Module):
def __init__(self):
super(AcceleratedModel, self).__init__()
# 在存储单元中引入计算操作
self.fc1 = nn.Linear(10, 5, bias=False)
self.fc2 = nn.Linear(5, 1, bias=False)def forward(self, x):
# 在存储单元中进行计算
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x# 创建一个使用存内计算的模型实例
accelerated_model = AcceleratedModel()# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(accelerated_model.parameters(), lr=0.01)# 训练模型
for epoch in range(100):
# 前向传播
outputs = accelerated_model(inputs)# 计算损失
loss = criterion(outputs, labels)# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()if epoch % 10 == 0:
print(f'Epoch {epoch}, Loss: {loss.item()}')

在这个例子中,我修改了模型代码,将线性层的偏置(bias)设置为False,这样就在存储单元中引入了计算操作,实现了一种简化的存内计算。

这段代码与之前的代码相似,但有一些关键区别:

使用存内计算:

  • 在这个代码中,AcceleratedModel引入了存内计算(in-place computation)。
  • 对于线性层nn.Linear,通过设置bias=False,禁用了偏置项的引入。
  • 这样做是为了在存储单元中进行计算,减少内存使用和提高计算效率。

存内计算的好处:

  • 存内计算指的是在原始内存位置上执行操作,而不是创建新的内存来存储结果。
  • 这可以节省内存,并且有时可以提高计算速度。
  • 在这里,通过禁用偏置项,可以减少额外的内存使用,适用于特定的计算场景。

训练过程:

  • 训练过程的结构与之前的代码相似,仍然使用均方误差损失和随机梯度下降优化器。
  • 通过前向传播、损失计算、反向传播和优化的循环进行模型训练。

打印训练过程中的损失值:

  • 在每隔10个迭代时,打印当前迭代次数和损失值。

总体来说,这段代码在神经网络模型中引入了存内计算的特性,通过禁用偏置项来实现,从而可能在一些场景下提高计算效率。

四. 未来发展方向

随着硬件技术和人工智能领域的不断发展,存内计算在神经网络中的应用有望迎来更多创新。未来的发展方向可能包括:

  • 硬件优化: 设计更为高效的存内计算硬件,以满足不同神经网络模型和任务的需求。

  • 自适应存内计算: 研究如何在不同计算场景下自适应地使用存内计算,以实现更灵活的神经网络加速。

  • 跨领域合作: 推动存内计算技术与其他领域的融合,如物联网、医疗、自动驾驶等,拓展存内计算的应用场景。

五. 存内计算的挑战与解决方案

虽然存内计算在提高神经网络性能方面表现出色,但也面临一些挑战。其中之一是硬件设计上的复杂性,特别是在实现存储单元和计算单元的紧密集成方面。此外,存内计算的适用范围和性能优势可能取决于特定的神经网络架构和任务。

为了应对这些挑战,研究人员和工程师正在进行深入的研究和创新。硬件优化方面的工作包括设计更高效的存内计算芯片,以提高性能并降低功耗。此外,制定通用的存内计算标准和接口,以促进不同硬件和软件之间的互操作性,也是解决挑战的重要一步。

六. 存内计算在实际应用中的案例

存内计算技术已经在一些实际应用中取得了显著的成果。在医疗影像分析中,采用存内计算的神经网络可以在设备端实现快速的诊断,减少数据传输和保护患者隐私。在自动驾驶领域,存内计算有望提高车辆对环境的感知速度,从而增强驾驶安全性。

这些案例突显了存内计算在实际应用中的潜力,同时也为未来更广泛的领域提供了启示。随着技术的进一步成熟和应用场景的不断拓展,存内计算将成为推动人工智能技术发展的重要引擎之一。

此外,存内计算在边缘设备上的广泛应用可能引发关于算法的公平性和透明度的讨论。确保存内计算系统的决策过程公正、可解释,以及对不同群体的平等对待,将有助于建立社会对这一技术的信任。

七. 总结

存内计算技术作为人工智能领域的一项创新,为神经网络的发展提供了全新的可能性。通过将计算操作嵌入存储单元,存内计算有效地解决了传统计算架构中数据搬运的瓶颈问题,提高了计算效率,降低了功耗。

随着未来的不断探索和发展,存内计算有望在人工智能领域发挥更大的作用。然而,我们也需谨慎应对相关的挑战和伦理考量,确保这一技术的应用能够符合社会的期望和法规,推动人工智能技术的可持续发展。在这个不断演进的领域,存内计算将继续为人工智能的未来发展带来新的可能性。

参考文献

  1. Vincent B .3D DRAM时代即将到来,泛林集团这样构想3D DRAM的未来架构[J].世界电子元器件,2023,(08):13-18.
  2. 3D DRAM Is Coming. Here’s a Possible Way to Build It.Benjamin Vincent.Jul 14, 2023 
  3. 邱鲤跳.3D堆叠DRAM Cache的建模以及功耗优化关键技术研究[D].国防科学技术大学,2016.
  4. 存内计算概述
  5. 中国科学技术大学

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云计算新宠:探索Apache Doris的云原生策略

文章目录 Apache Doris 特性极简架构高效自运维高并发场景支持MPP 执行引擎明细与聚合模型的统一便捷数据接入 Apache Doris 极速 1.0 时代极速列式内存布局向量化的计算框架Cache 亲和度虚函数调用SIMD 指令集 稳定多源 关于 Apache Doris 开源社区基于云原生向量数据库Milvus…

腾讯云服务器宝塔面板中Docker应用无法访问

今天在用宝塔面板的时候用Docker一键部署Jenkins 发现部署好了端口也都开放了,防火墙也都开放了,安全组也都开放了。但是就是访问不了。 解决办法,在服务器终端执行下面指令 echo net.ipv4.ip_forward 1 >> /etc/sysctl.conf &…

vmware 中虚拟机Ubuntu磁盘不够,扩展磁盘,并分配

vmware 中虚拟机Ubuntu磁盘不够,扩展磁盘,并分配 Ubuntu虚拟机处于关机状态。虚拟机 -> 设置 ->硬盘 ->扩展 ,可以直接多给点,这里只是做演示。 3.开启虚拟机,一般不会报错,我这里报错了&#…

Base 链官方点名 $AYB,继续飙涨指日可待?

近期 $AYB(All Your Base Are Belong To Us) 成为了 BASE 链上最火的 meme 项目,据悉 $AYB 在去年年底上线至今涨幅已经超过了 100 倍,其在被各大加密社区、KOL 追捧的同时,也被公认是继 Solana 上的 $BONK、Avalanche…

【Leetcode每日一题】二分查找 - 寻找旋转排序数组中的最小值(难度⭐⭐)(22)

1. 题目解析 Leetcode链接:153. 寻找旋转排序数组中的最小值 这个题目乍一看很长很复杂,又是旋转数组又是最小值的 但是仔细想想,结合题目给的示例,不难看出可以用二分的方法来解决 核心在于找到给定数组里面的最小值 2. 算法原…

亚信安慧AntDB开启超融合数据库新纪元

(一) 前言 据统计,在信息化时代的今天,人们一天所接触到的信息量,是古人一辈子所能接收到的信息量的总和。当今社会中除了信息量“多”以外,人们对信息处理的“效率”和“速度”的要求也越来越高。譬如&…

协议-http协议-基础概念01-发展历程-http组成-http是什么-相关的应用-相关的协议

发展历程-http组成-http是什么-相关的应用-相关的协议 参考来源: 极客时间-透视HTTP协议(作者:罗剑锋); 01-HTTP的发展历程 1989 年,任职于欧洲核子研究中心(CERN)的蒂姆伯纳斯 - 李(Tim Ber…

使用全局事件总线实现任意组件间的通讯

本文以vue2中爷孙组件通讯为例,需求是点击孙组件的按钮,实现关闭爷组件的弹窗。 全局事件总线是通过Vue实例的事件系统来实现组件之间的通讯,可以方便地在任何组件中进行事件的触发和监听。 以下是使用全局事件总线实现爷孙组件通讯的步骤&a…

Java 反射机制

​ 更多内容,前往IT-BLOG ​ 反射Reflection被视为动态语言的关键,反射机制允许程序在执行期间借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。反射是一种功能强大且复杂的机制。使用它的主要人员是工具构…

登录页设计新选择:毛玻璃和新拟态风格,非2.5D和插画风

登录页给潜在用户传递了产品的品牌调性,是非常重要的一类页面,之前2.5D和插画风格的登录页流行一时,不过这阵风好像过去了,新的风格开始涌现了。 一、越来越流行的毛玻璃设计风格 毛玻璃风格是指将背景模糊处理,使得…

如何在 Linux 上使用 dmesg 命令

文章目录 1. Overview2.ring buffer怎样工作?3.dmesg命令4.移除sudo需求5. 强制彩色输出6.使用人性化的时间戳7.使用dmesg的人性化可读时间戳8.观察实时event9.检索最后10条消息10.搜索特定术语11.使用Log Levels12.使用Facility Categories13.Combining Facility a…

智慧物流之道:数据可视化引领全局监控

在智慧物流的背景下,数据可视化催生了物流管理的全新范式。首先,通过数据可视化,物流企业可以实现对整个供应链的全景式监控。下面我就可以可视化从业者的角度,简单聊聊这个话题。 首先,图表和地图的直观展示使决策者能…

Cyber RT 参数

以共享的方式实现不同节点之间数据交互的通信模式。 参数服务器是基于服务实现的,包含客户端和服务器端,服务端节点可以存储数据,客户端节点可以访问服务端节点操作数据,这个过程虽然基于请求响应的,但是无需自己实现…

linuxlsof详解

lsof 是 List Open File 的缩写, 它主要用来获取被进程打开文件的信息,我们都知道,在Linux中,一切皆文件,lsof命令可以查看所有已经打开了的文件,比如: 普通文件,目录,特殊的块文件,…

el-table 多选表格存在分页,编辑再次操作勾选会丢失原来选中的数据

el-table表格多选时,只需要添加type"selection", row-key及selection-change,如果存在分页时需要加上reserve-selection,这里就不写具体的实现方法了,可以查看我之前的文章,这篇文章主要说一下存…

使用pytorch实现一个线性回归训练函数

使用sklearn.dataset 的make_regression创建用于线性回归的数据集 def create_dataset():x, y, coef make_regression(n_samples100, noise10, coefTrue, bias14.5, n_features1, random_state0)return torch.tensor(x), torch.tensor(y), coef 加载数据集,并拆分…

shader学习记录——融合、融球效果

融合、融球效果shader,重点在等势面公式上 Shader "Custom/MetaballsShader" {Properties{_MainTex ("Texture", 2D) "white" {}_Color("Color",Color) (1,1,1,1)}SubShader{Tags { "RenderType""Opaque…

什么是光谱共焦位移传感器?揭秘它隐藏的5大优势!

光谱共焦位移传感器是一种先进的传感技术,它利用光学原理来精确测量物体表面的微小位移。这种传感器结合了光谱学和共焦显微术的原理,通过分析反射光的光谱特性来确定物体表面的位置。 光谱共焦传感器的核心部件是光谱仪,它能够将反射光分解成…

【MQL】扩充Comment函数的功能

一、MQL语言中Comment函数的缺陷 Comment函数只能在图表上显示文本信息,无法将信息输出到日志文件或其他位置。Comment函数的文本信息会随着新的新的信息出现而更新,这可能导致就的信息被覆盖。Comment函数的文本信息长度有限,超过一定长度的…

代码随想录算法训练营Day44 | 完全背包理论基础、518.零钱兑换 II、377.组合总和 Ⅳ

完全背包理论基础 完全背包看起来复杂不少,但其代码和0-1背包几乎没啥差别,就只改变了一个背包的遍历顺序: 基于0-1背包的滚动数组实现,将 j 的遍历顺序改为从左到右(此时物品会被重复使用) 完全背包的重点…