【监督学习之支持向量机(SVM)】

在这里插入图片描述
曾梦想执剑走天涯,我是程序猿【AK】

在这里插入图片描述

目录

  • 简述概要
  • 知识图谱
    • 基本原理
    • 支持向量
    • 线性SVM与非线性SVM
    • 优化问题
    • 软间隔与正则化
    • SVM的应用
    • 实现

简述概要

了解监督学习-支持向量机(SVM)

知识图谱

支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法,主要用于分类和回归分析。SVM在处理高维数据和解决非线性问题方面表现出色,尤其是在数据集具有明确的边界时。以下是SVM的详细解释:

基本原理

SVM的核心思想是找到一个超平面(在二维空间中是一条直线,在三维空间中是一个平面,以此类推),这个超平面能够最好地分隔不同类别的数据点。在二分类问题中,目标是最大化两个类别之间的间隔(margin),从而提高模型的泛化能力。

支持向量

在SVM中,决定超平面位置的关键数据点被称为支持向量。这些数据点位于间隔边界上,它们是距离超平面最近的数据点。SVM的最终决策只依赖于这些支持向量,而不是整个数据集。

线性SVM与非线性SVM

  1. 线性SVM:当数据集线性可分时,即可以通过一个线性超平面将不同类别的数据点完全正确地分隔开,这时可以使用线性SVM。线性SVM通过最大化间隔来求解最优超平面。

  2. 非线性SVM:当数据集不是线性可分时,SVM通过核技巧(kernel trick)来处理非线性问题。核函数能够将原始数据映射到更高维的空间,在这个空间中数据可能是线性可分的。常用的核函数包括径向基函数(RBF,也称为高斯核)、多项式核、Sigmoid核等。

优化问题

SVM的训练过程实际上是一个凸优化问题。目标是找到一个权重向量(w)和偏置项(b),使得间隔最大化。这个问题可以通过拉格朗日乘子法转化为对偶问题,然后使用序列最小优化(Sequential Minimal Optimization,SMO)算法或其他优化算法求解。

软间隔与正则化

在现实世界的数据集中,往往存在噪声和异常点,这使得数据集不是严格线性可分的。为了解决这个问题,SVM引入了软间隔(soft margin)的概念,允许一些数据点落在间隔边界之外。这通过在优化问题中引入松弛变量(slack variables)和正则化参数(C)来实现。正则化参数C控制着间隔最大化和分类错误的权衡。

SVM的应用

SVM在许多领域都有广泛的应用,包括图像识别、文本分类、生物信息学、股票市场分析等。它在处理小到中等规模的数据集时表现尤为出色。

实现

SVM的实现通常依赖于专门的库,如Python的scikit-learn库中的SVC(用于分类)和SVR(用于回归)。这些库提供了SVM的高效实现,包括核函数的选择、参数调整和模型训练等功能。

总结来说,SVM是一种强大的机器学习算法,它通过最大化间隔和使用核技巧来处理线性和非线性问题。在实际应用中,SVM需要仔细调整参数以获得最佳性能。

推荐链接:
考察数据科学家支持向量机(SVM)知识的25道题,快来测测吧
从零构建支持向量机SVM
支持向量机(SVM)方法在降水分类预测中的应用



                                                                                                         ---- 永不磨灭的番号:我是AK



在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/705690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

visual stdio 使用ATL简单使用COM组件

先试用visual stdio创建ATL项目 选择第一个创建ATL简单对象 ProgId也需要添加一下,默认创建完之后添加方法 STDMETHODIMP AddNumber(LONG __num, LONG* result);添加定义 STDMETHODIMP_(HRESULT __stdcall) CATLSimpleObject::AddNumber(LONG __num, LONG* r…

LASSO算法

LASSO (Least Absolute Shrinkage and Selection Operator) 是一种回归分析的方法,它能够同时进行变量选择和正则化,以增强预测准确性和模型的解释性。LASSO通过在损失函数中加入一个L1惩罚项来实现这一点。该惩罚项对系数的绝对值进行约束。 基本概念 …

【深度学习笔记】深度卷积神经网络——AlexNet

深度卷积神经网络(AlexNet) 在LeNet提出后,卷积神经网络在计算机视觉和机器学习领域中很有名气。但卷积神经网络并没有主导这些领域。这是因为虽然LeNet在小数据集上取得了很好的效果,但是在更大、更真实的数据集上训练卷积神经网…

数学建模论文、代码百度网盘链接

1.[2018中国大数据年终总决赛冠军] 金融市场板块划分与轮动规律挖掘与可视化问题 2.[2019第九届MathorCup数模二等奖] 数据驱动的城市轨道交通网络优化策略 3.[2019电工杯一等奖] 露天停车场停车位的优化设计 4.[2019数学中国网络数模一等奖] 基于机器学习的保险业数字化变革…

关于timeline的详细解析

关于timeline的详细解析 初始化画布 在echarts中有一个组件叫timeline他与echart中的其他图表结合起来 能很好的展现一段时间内各种数据的变化趋势 接下来我将用官网案例去逐步展示一下关于timeline中的各种详细配置 首先我们创建好vue的组件结构先尝试一些简单的小demo看看…

Spark集群搭建的三种方式详解

国科大学习生活(期末复习资料、课程大作业解析、学习文档等): 文章专栏(点击跳转) 大数据开发学习文档(分布式文件系统的实现,大数据生态圈学习文档等): 文章专栏(点击跳转&#xff…

交叉编译qt到arm平台

使用pkg-config命令查看xxx包是否存在: pkg-config --print-errors xxx pkg-config的搜索路径可以通过环境变量PKG_CONFIG_PATH指定。需要在运行./configure 之前指定。 ./configure -release -qt-libjpeg -qt-libpng -qt-zlib -qt-pcre -xplatform linux-aarch64-…

CG-0A 电子水尺可实现对水位数据的连续自动监测

CG-0A 电子水尺可实现对水位数据的连续自动监测产品概述 本产品是一种采用微处理器芯片为控制器,内置通讯电路的数字式水位传感器,具备高的可靠性及抗干扰性能。适用于江、河、湖、水库及蓄水池、水渠等处的水位测量使用。 本产品采用了生产工艺技术&…

雾锁王国服务器怎么建?雾锁王国服务器搭建方法

雾锁王国Enshrouded服务器搭建怎么搭建?非常简单,阿里云计算巢雾锁王国程序,可以一键搭建雾锁王国多人联机服务器,腾讯云是基于雾锁王国镜像系统,阿里云服务网aliyunfuwuqi.com汇总雾锁王国服务器搭建,超简…

消息中间件篇之Kafka-高性能设计

一、高性能设计 消息分区:不受单台服务器的限制,可以不受限的处理更多的数据。 顺序读写:磁盘顺序读写,提升读写效率。 页缓存:把磁盘中的数据缓存到内存中,把对磁盘的访问变为对内存的访问。 零拷贝&a…

MATLAB环境下基于深层小波散射网络的纹理图像分类方法

图像分类是模式识别重要研究领域之一,它的任务是把目标样本分成不同类别,赋予样本相应类别标签。分类实现的基础是用传感器检测到样本的特征,比如形状、颜色、纹理等基本特征或通过基本特征提取更为复杂的特征信息,其中纹理是表示…

LeetCode 刷题 [C++] 第54题.螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。 题目分析 根据题意可知,我们不需要记录已经走过的路径,只需要通过调整矩阵的上下左右边界即可完成任务;首先创建出矩阵…

什么是大模型微调?微调的分类、方法、和步骤

2023年,大模型成为了重要话题,每个行业都在探索大模型的应用落地,以及其能够如何帮助到企业自身。尽管微软、OpenAI、百度等公司已经在创建并迭代大模型并探索更多的应用,对于大部分企业来说,都没有足够的成本来创建独特的基础模型(Foundation Model):数以百亿计的数据…

VL817-Q7 USB3.0 HUB芯片 适用于扩展坞 工控机 显示器

VL817-Q7 USB3.1 GEN1 HUB芯片 VL817-Q7 USB3.1 GEN1 HUB芯片 VIA Lab的VL817是一款现代USB 3.1 Gen 1集线器控制器,具有优化的成本结构和完全符合USB标准3.1 Gen 1规范,包括ecn和2017年1月的合规性测试更新。VL817提供双端口和双端口4端口配置&…

FMM 笔记:FMM(colab上执行)【官方案例解读】

在colab上运行,所以如何在colab上安装fmm,可见FMM 笔记:在colab上执行FMM-CSDN博客 fmm见:论文笔记:Fast map matching, an algorithm integrating hidden Markov model with precomputation_ubodt(upper bounded ori…

分布式事务(7)之Seata简介

一、分布式事务解决方案 2PC即两阶段提交协议,是将整个事务流程分为两个阶段,准备阶段(Prepare phase)、提交阶段(commit phase),2是指两个阶段,P是指准备阶段,C是指提交…

智慧医疗时代来临,全视通给大家介绍智慧病房

随着科技的不断发展,智慧医疗已经成为医疗行业的一个重要趋势。智慧医疗技术的应用,不仅提高了医疗服务的效率和质量,也使得患者的就医体验更加舒适和便捷。在智慧医疗时代,智慧病房呼叫系统作为其中的一项重要技术,已…

用html编写的小广告板

用html编写的小广告板 相关代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</tit…

springboot003图书个性化推荐系统的设计与实现(源码+调试+LW)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。今天给大家介绍一篇基于SpringBoot的图书个…