牛客周赛 Round 34 解题报告 | 珂学家 | 构造思维 + 置换环


前言


整体评价

好绝望的牛客周赛,彻底暴露了CF菜菜的本质,F题没思路,G题用置换环骗了50%, 这大概是唯一的亮点了。


A. 小红的字符串生成

思路: 枚举

a,b两字符在相等情况下比较特殊

a, b = input().split()
if a == b:print (2)print (a)print (a + a)
else:print (4)print (a)print (b)print (a + b)print (b + a)

B. 小红的非排列构造

思路: 脑筋急转弯

如果合法,就是0

如果不合法,就把第1项改为n+1(排列外的数)

n = int(input())
arr = list(map(int, input().split()))si = set()
for v in arr:if 1 <= v <= n:si.add(v)
if len(si) != n:print (0)
else:print (1)print (1, n + 1)

C. 小红的数字拆解

思路: 贪心

从高位到低位贪心即可

s = input()arr = []i = 0
while i < len(s):j = iwhile j < len(s):p = ord(s[j]) - ord('0')if p % 2 == 0:breakj += 1arr.append(s[i:j+1])i = j + 1arr.sort(key=lambda x: (len(x), x))print (*arr, sep='\n')

D. 小红的陡峭值

思路: 构造

这题是限制性很强的题, 绝对差值总和为1

对于不满足条件数组,可以立马返回 -1.

难点在于

如何构造合法数组 如何构造合法数组 如何构造合法数组

假定0元素(左右两侧都存在非0值),和左侧元素保持一致(反证法使得该假设一定成立)

那就剩下一侧有非0值的0值,如何讨论呢?

  • 如果绝对差值总和为1
    • 那就和左侧/右侧的那个非0值,保持一致
  • 如果绝对差值总和为0
    • 那就选一边构造一个比左侧/右侧刚好大1的数
n = int(input())
arr = list(map(int, input().split()))if arr == [0 for _ in range(n)]:if len(arr) == 1:print (-1)else:print (*([1] + [2] * (n - 1)), sep=' ')
else:# 计算当前的差值综合brr = [v for v in arr if v > 0]diff = 0for i in range(len(brr) - 1):diff += abs(brr[i] - brr[i+1])if diff > 1:print (-1)else:first, last = -1, -1for i in range(n):if arr[i] != 0:if first == -1:first = ilast = i # 填充中间的值pre = arr[first]for i in range(first + 1, last):if arr[i] == 0:arr[i] = preelse:pre = arr[i]# 填充两端的值if diff == 1:# 需要两端保持绝对值差值为0for i in range(first):arr[i] = arr[first]for i in range(last + 1, n):arr[i] = arr[last]print (*arr, sep=' ')else:# 需要两端构建出一个绝对值差值1if first > 0:for i in range(first):arr[i] = arr[first] + 1for i in range(last + 1, n):arr[i] = arr[last]print (*arr, sep=' ')elif last + 1 < n:for i in range(last + 1, n):arr[i] = arr[last] + 1print (*arr, sep=' ')else:print (-1)

E. 小红的树形 dp

思路: BFS + 验证

属于诈骗题,因为题目一直再诱导你往树形DP上去靠

其实从bfs出发,进行交叉染色

然后对边上两点进行验证,如果存在同色,即不合法

n = int(input())
s = input()
ss = list(s)g = [[] for _ in range(n)]for _ in range(n - 1):u, v = list(map(int, input().split()))u -= 1v -= 1g[u].append(v)g[v].append(u)from collections import dequedeq = deque()
for i in range(n):if ss[i] != '?':deq.append((i, ss[i]))# 需要补充这种特殊情况
if len(deq) == 0:ss[0] = 'd'deq.append((0, ss[0]))# BFS流程
while len(deq) > 0:idx, ch = deq.popleft()for v in g[idx]:if ss[v] == '?':ss[v] = 'd' if ch == 'p' else 'p'deq.append((v, ss[v]))# 验证逻辑
ok = True
for i in range(n):ch = ss[i]if ch == '?':ok = Falsebreakfor v in g[i]:if ch == 'd' and ss[v] != 'p':ok = Falsebreakif ch == 'p' and ss[v] != 'd':ok = Falsebreakif not ok:print (-1)
else:print (''.join(ss))

F. 小红的矩阵构造

思路: 异或特性

贴一下皮神的代码

代码即是说服力

n, m, x = map(int, input().split())res = [[0] * m for _ in range(n)]if x % 4 == 0:res[0][0] = res[0][1] = res[1][0] = res[1][1] = x // 4for ls in res:print(*ls)
elif x == 2:print(-1)
else:res[2][0] = res[2][1] = 1res[1][0] = res[1][2] = 1res[0][1] = res[0][2] = 1for i in [0, -1]:for j in [0, -1]:res[i][j] += (x - 6) // 4for ls in res:print(*ls)

G. 小红的元素交换

思路: 置换环 + 找规律

假如这题没有交换颜色的限制,那这题就是裸的置换环

但是实际上,这题的核心框架依旧是

置换环 置换环 置换环

具体情况需要分类讨论

  • 同一置换环(a个元素)中存在两种颜色, 则交换一定为a-1

  • 同一置换环(a个元素)中只存在1种颜色, 则需要借助外部的非同色,这样为a-1+2=a+1

但是这样做,只能对大致50%+

为啥呢?

因为对于纯色R的置换环,和纯色W的置换环,其实可以互相借调,因此这一组合,可以减少2次不必要的交换。

因此在原先的基础上,需要优化减掉

m i n ( 纯色 R 的群数,纯色 W 的群数 ) ∗ 2 min(纯色R的群数,纯色W的群数) * 2 min(纯色R的群数,纯色W的群数)2

n = int(input())
arr = list(map(int, input().split()))
s = input()from collections import Counterif [i + 1 for i in range(n)] != arr and len(Counter(s)) == 1:print(-1)
else:res = 0white, red = 0, 0for i in range(n):if arr[i] == i + 1:continueelse:# 置换环核心逻辑state = 0tmp = 0while arr[i] != i + 1:p1, p2 = i, arr[i] - 1arr[p1], arr[p2] = arr[p2], arr[p1]tmp += 1state |= 2 if s[p1] == 'R' else 1state |= 2 if s[p2] == 'R' else 1# 分类讨论置换环的纯色情况if state == 3:res += tmpelse:# 纯色,需要借调外部力量res += tmp + 2if state == 1:white += 1else:red += 1print(res - min(white, red) * 2)

写在最后

alt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702315.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【监控】grafana图表使用快速上手

目录 1.前言 2.连接 3.图表 4.job和path 5.总结 1.前言 上一篇文章中&#xff0c;我们使用spring actuatorPrometheusgrafana实现了对一个spring boot应用的可视化监控。 【监控】Spring BootPrometheusGrafana实现可视化监控-CSDN博客 其中对grafana只是打开了一下&am…

【数据结构与算法】(22)高级数据结构与算法设计之 Divide and Conquer 分治法 代码示例与详细讲解

目录 4.4 Divide and Conquer1) 概述二分查找快速排序归并排序合并K个排序链表 - LeetCode 23对比动态规划 2) 快速选择算法数组中第k个最大元素-Leetcode 215数组中位数 3) 快速幂-Leetcode 504) 平方根整数部分-Leetcode 695) 至少k个重复字符的最长子串-Leetcode 395 4.4 Di…

云原生之API网关Traefik

1. 前言 说到web服务的开源网关&#xff0c;我首先想到的是Nginx&#xff0c;最早使用的就是它&#xff0c;现在都还在使用它。系统上线了Docker Swarm集群之后&#xff0c;不继续使用Nginx直接做Docker服务的网关&#xff0c;是因为Nginx毕竟比Docker Swarm出现的早&#xff0…

简单实现文字滚动效果-CSS版本

先看看效果 话不多说直接上代码 <template><div class"main"><div class"scroll-region"><div class"swiper-scroll-content"><span class"list-btn" v-for"(item, index) in overviewList" :…

【基于Ubuntu20.04的Autoware.universe安装过程】方案二:双系统 | 详细记录 | 全过程图文 by.Akaxi

目录 一、Autoware.universe背景 Part-1&#xff1a;安装双系统教程 二、查看Windows引导方式 三、制作安装盘 四、设置电脑配置 1.关闭bitlocker 2.压缩硬盘分区 3.关闭Secure Boot 4.关闭intel RST 5.BIOS设置U盘引导 五、安装Ubuntu20.04 1.ventoy引导 2.安装配…

07 Redis之持久化(RDB(Redis DataBase) + 写时复制 + AOF(Append Only File)+混合持久化)

4 Redis持久化 Redis 是一个内存数据库&#xff0c;然而内存中的数据是不持久的&#xff0c;若主机宕机或 Redis 关机重启&#xff0c;则内存中的数据全部丢失。 当然&#xff0c;这是不允许的。Redis 具有持久化功能&#xff0c;其会按照设置以快照或操作日志的形式将数据持…

双重检查锁定与延迟初始化

双重检验锁&#xff1a;多线程下的单例模式。 懒加载模式&#xff1a;延迟初始化。

如何做到三天内完成智能直流伺服电机系统开发?

适应EtherCAT/CANopen协议三相伺服电机直流伺服电机直线伺服音圈电机 如何开发高性能直流伺服电机驱动控制器&#xff1f; 需要熟悉高性能单片机&#xff08;至少是ARM或DSP水平的&#xff09;&#xff0c;需要掌握空间磁场矢量控制FOC&#xff0c;需要掌握运动轨迹算法……此…

【03】逆序数组

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 一、逆序函数是什么&#xff1f; 二、逆序函数原码 1.直接逆序 2.创建临时数组逆序 三、结言 &#x1f4a5;一、逆序函数是什么&#xff1f; 示例&#xff1a;输入1 4 …

【MySQL面试复习】在MySQL中,如何定位慢查询?

系列文章目录 系列文章目录什么情况下需要定位慢查询&#xff1f;慢查询的一般表现形式是什么&#xff1f;如何定位慢查询&#xff1f; 什么情况下需要定位慢查询&#xff1f; 页面加载过慢、接口压测响应时间过长&#xff08;比如超过1s&#xff09; 慢查询的一般表现形式是什…

【MySQL面试复习】什么是聚簇索引(聚集索引)和非聚簇索引(二级索引)/什么是回表?

系列文章目录 在MySQL中&#xff0c;如何定位慢查询&#xff1f; 发现了某个SQL语句执行很慢&#xff0c;如何进行分析&#xff1f; 了解过索引吗&#xff1f;(索引的底层原理)/B 树和B树的区别是什么&#xff1f; 系列文章目录什么是聚簇索引&#xff08;聚集索引&#xff09…

SpringBootRest服务调用

目录 RestTemplate 依赖配置 自定义RestTemplate webCilent 依赖配置 自定义webCilent springboot中有两种方式实现Rest远程服务调用&#xff0c;分别是RestTemplate与webCilent。下面分别介绍一下这两种方式。 RestTemplate 依赖配置 RestTemplate是Spring Framework提供的…

蓝桥杯14届计算思维国赛U8组包含真题和答案

十四届蓝桥杯国赛考试计算思维 U8 组 答案在底部 第一题 以下选项中,( )是由美国计算机协会设立,对在计算机领域内作出重要贡献的个人授予的奖项 。A.图灵奖 C.菲尔兹奖 B.诺贝尔奖 D.普利策奖 第二题 希希去吃寿司。餐台上摆出了许多食物,可供大家自选。如下图所示。 …

在 where子句中使用子查询(二)

目录 ANY ANY &#xff1a;功能上与 IN 是没有任何区别的 >ANY &#xff1a;比子查询返回的最小值要大 ALL >AL &#xff1a;比子查询返回的最大值要大 EXISTS() 判断 NOT EXISTS Oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209…

设计模式学习笔记 - 面向对象 - 7.为什么要多用组合少用继承?如何决定该用组合还是继承?

前言 在面向对象编程中&#xff0c;有一条非常经典的设计原则&#xff1a;组合优于继承&#xff0c;多用组合少用继承。 为什么不推荐使用继承&#xff1f; 组合比继承有哪些优势&#xff1f; 如何判断该用组合还是继承&#xff1f; 为什么不推荐使用继承&#xff1f; 继承…

解决IDEA搜不到插件

File -> Settings -> Plugins https://plugins.jetbrains.com/ 完成以上操作即可搜到插件

化学分子Mol2文件格式与使用注意事项

欢迎浏览我的CSND博客&#xff01; Blockbuater_drug …点击进入 文章目录 前言一、Mol2文件示例二、 Mol2文件主要结构解释及注意事项MOLECULE 字段解释ATOM 字段解释BOND 字段解释SUBSTRUCTURE字段解释 总结参考资料 前言 Mol2格式文件是一个ASCII 文件&#xff0c;由Tripos…

【EAI 025】Ego4D: Around the World in 3,000 Hours of Egocentric Video

Paper Card 论文标题&#xff1a;Ego4D: Around the World in 3,000 Hours of Egocentric Video 论文作者&#xff1a;Kristen Grauman, Andrew Westbury, Eugene Byrne, et al. 作者单位&#xff1a;UC Berkeley, CMU, Google 论文原文&#xff1a;https://arxiv.org/abs/2110…

linux 文本编辑命令【重点】

目录 vi&vim介绍 vim安装 vim使用 查找命令 find grep 文本编辑的命令&#xff0c;主要包含两个: vi 和 vim vi&vim介绍 作用: vi命令是Linux系统提供的一个文本编辑工具&#xff0c;可以对文件内容进行编辑&#xff0c;类似于Windows中的记事本 语法: vi file…

在autodl搭建stable-diffusion-webui+sadTalker

本文介绍在autodl.com搭建gpu服务器&#xff0c;实现stable-diffusion-webuisadTalker功能&#xff0c;图片音频 可生成视频。 autodl租GPU 自己本地部署SD环境会遇到各种问题&#xff0c;网络问题&#xff08;比如huggingface是无法访问&#xff09;&#xff0c;所以最好的方…