华为---RSTP(三)---P/A机制及RSTP的生成树形成过程

目录

1. P/A机制简介

1.1 P/A机制的作用

1.2 P/A协商的前提条件

1.3 RSTP选举思路

2. P/A协商过程

3. 举例说明RSTP的生成树形成过程

3.1 示例环境要求

3.2 RSTP的生成树形成过程

3.2.1 SW和SW1之间链路上抓包分析

3.2.2 SW和SW2之间链路上抓包分析

3.2.3 SW1和SW2之间链路上抓包分析

3.2.4 SW2和SW3之间链路上抓包分析

3.2.5 SW1和SW3之间链路上抓包分析

3.2.6 备份端口选举抓包分析


1. P/A机制简介

P(Proposal)/A(Agreement)机制---请求/确认机制
        P/A机制        P:Proposal-协商        A:Agreement-同意
        P/A机制是RSTP( Rapid Spanning Tree Protocol,快速生成树协议)中的一个关键组成部分,它允许指定的端口在满足一定条件下快速进入转发状态,而无需等待定时器的超时。

1.1 P/A机制的作用

        为了使生成树链路上的端口(根端口、指定端口)快速进入转发状态,不用等待30秒延时(2个转发延时)。

1.2 P/A协商的前提条件

        P/A机制的触发前提是DP端口处于Discarding状态,两台交换设备之间链路必须是点对点的全双工模式,一旦P/A协商不成功,指定端口到转发状态就需要等待两个转发延时(30秒),协商过程与STP一样。

1.3 RSTP选举思路

        RSTP选举原理和STP本质上相同:选举根交换机->选举非根交换机上的根端口->选举指定端口->选举预备端口和备份端口。
        事实上对于STP,指定端口的选择可以很快完成,主要的速度瓶颈在于:为了避免环路,必须等待足够长的时间,使全网的端口状态全部确定,也就是说必须要等待至少一个Forward Delay所有端口才能进行转发。而RSTP的主要目的就是消除这个瓶颈,通过阻塞自己的非根端口来保证不会出现环路。而使用P/A机制加快了上游端口转到Forwarding状态的速度。

        RSTP在选举的过程中加入了“发起请求-回复同意”(P/A机制)这种确认机制,由于每个步骤有确认就不需要依赖计时器来保证网络拓扑无环后才进入转发状态,只需要考虑BPDU发送报文并计算无环拓扑的时间(一般都是秒级)。解决了STP网络收敛慢问题。

2. P/A协商过程

        如下图所示,根桥S1和S2之间新添加了一条链路。在当前状态下,S2的另外几个端口p2是Alternate端口,p3是指定端口且处于Forwarding状态,p4是边缘端口。

        Proposal/Agreement过程示意图

新链路连接成功后,P/A机制协商过程如下:

  1. p0和p1两个端口马上都先成为指定端口,发送RST BPDU。
  2. S2的p1口收到更优的RST BPDU,马上意识到自己将成为根端口,而不是指定端口,停止发送RST BPDU。
  3. S1的p0进入Discarding状态,于是发送的RST BPDU中把proposal置1。
  4. S2收到根桥发送来的携带proposal的RST BPDU,开始将自己的所有端口进入sync变量置位。
  5. p2已经阻塞,状态不变;p4是边缘端口,不参与运算;所以只需要阻塞非边缘指定端口p3。
  6. 各端口的synced变量置位后,p2、p3进入Discarding状态,p1进入Forwarding状态并向S1返回Agreement位置位的回应RST BPDU。
  7. 当S1判断出这是对刚刚发出的Proposal的回应,于是端口p0马上进入Forwarding状态。

        上述P/A机制协商过程是华为官方资料描述,说明了两个RSTP交换机端口之间新加链路的P/A协商过程,没有讲述整个RSTP网络如何进行P/A协商的?生成树如何形成的?。

3. 举例说明RSTP的生成树形成过程

3.1 示例环境要求

        组网如下图所示,提前配置SW为根交换机,所有交换机都配置成RSTP模式。为便于网络数据抓取,每两台交换机之间用两台集线器hub相连,先开启所有集线器,然后在集线器间的节点上抓取数据,最后选中所有交换机点击开启设备。

3.2 RSTP的生成树形成过程

        通过抓包分析根交换机、根端口、指定端口、预备端口和备份端口的选举,RSTP的生成树形成过程。

3.2.1 SW和SW1之间链路上抓包分析


        SW的Eth 0/0/1和SW1的Eth 0/0/3两个端口马上都先成为指定端口,并处于Discarding状态,发送Proposal位置位1的RST BPDU。

        SW1的Eth 0/0/3口收到更优的Proposal位置位1的RST BPDU:
        (1)马上意识到自己将成为根端口,而不是指定端口;
        (2)阻塞除SW1的Eth 0/0/3口和边缘端口外的所有端口;
        (3)给SW的Eth 0/0/1口回复Agreement位置位1的RST BPDU;
        (4)SW1所有非边缘端口发送Topology Change位置位1的RST BPDU,更新Mac地址表;
        (5)停止发送RST BPDU。

        SW交换机收到P/A请求的回应后:
        (1)SW的Eth 0/0/1端口马上进入Forwarding状态;
        (2)SW的所有指定端口发送Topology Change位置位1的RST BPDU,更新Mac地址表。

        到此SW的Eth 0/0/1端口和SW1的Eth 0/0/3端口之间的链路P/A协商完成,SW为根交换机,SW的Eth 0/0/1为指定端口,SW1的Eth 0/0/3为根端口。

3.2.2 SW和SW2之间链路上抓包分析

        分析过程和SW的Eth 0/0/1端口至SW1的Eth 0/0/3端口之间的链路P/A协商一样,不再赘述,确认SW为根交换机,SW的Eth 0/0/2为指定端口,SW2的Eth 0/0/3为根端口。

3.2.3 SW1和SW2之间链路上抓包分析


        SW1的Eth 0/0/1和SW2的Eth 0/0/1两个端口马上都先成为指定端口,并处于Discarding状态,发送Proposal位置位1的RST BPDU。

        上述图说明P/A协商失败,SW2交换机发送了约15秒的P置位 RST BPDU,SW2的Eth 0/0/1端口进入Learning状态,15秒后进入forwarding状态。

        一旦P/A协商不成功,指定端口的选择就需要等待两个Forward Delay,协商过程与STP一样,SW1和SW2交换机根交换机ID和根路径开销都一样,所以按照STP指定端口选举规则进行选举,需要通过比较各自的交换机ID(BID)选举指定端口,SW1的ID是32768.4c1f-ccbe-6957,SW2的ID是32768.4c1f-cc16-6c7a,SW1的ID大于SW2的ID,所以SW2的Eth 0/0/1口为指定端口,SW1的Eth 0/0/1口为预备端口。

3.2.4 SW2和SW3之间链路上抓包分析

        分析过程和SW的Eth 0/0/1端口至SW1的Eth 0/0/3端口之间的链路P/A协商一样,不再赘述,确认SW为根交换机,SW2的Eth 0/0/2为指定端口,SW3的Eth 0/0/1为根端口。

3.2.5 SW1和SW3之间链路上抓包分析

        SW1的Eth 0/0/2和SW3的Eth 0/0/2两个端口马上都先成为指定端口,并处于Discarding状态,发送Proposal位置位1的RST BPDU。

        上述图说明P/A协商失败,SW1交换机发送了约15秒的P置位 RST BPDU,SW1的Eth 0/0/2端口进入Learning状态,15秒后进入forwarding状态。

        一旦P/A协商不成功,指定端口的选择就需要等待两个Forward Delay,协商过程与STP一样。SW1和SW3交换机根交换机ID一样,SW1根路径开销是200000,SW3根路径开销是400000,按照STP指定端口选举规则进行选举,SW1根路径开销小,所以SW1的Eth 0/0/2口为指定端口,SW3的Eth 0/0/2口为预备端口。

3.2.6 备份端口选举抓包分析

        如上网络拓扑图所示,在链路6和链路7上抓包:


        从上图可以看出,数据都是从SW3的Eth 0/0/3口发出的RST BPDU,说明SW3在发送RST BPDU前,因为根交换机ID、跟路径开销、当前交换机ID都一样,所以通过比较端口ID(PID),选择小端口ID的Eth 0/0/3端口为指定端口,大端口ID的Eth 0/0/4端口为备份端口。

SW3的Eth 0/0/3口P/A协商是失败的,是按照STP指定端口选举规则进行选举的。

  • RSTP的生成树是每条链路之间进行P/A协商,有更优RST BPDU立即更新。
  • Alternate端口就是由于学习到其它交换机发来的更优配置BPDU报文(更小的RID)而阻塞的端口。
  • Backup端口就是由于学习到自己发送的更优配置BPDU报文而阻塞的端口。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701207.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实现外网手机或者电脑随时随地远程访问家里的电脑主机(linux为例)

文章目录 一、背景概要二、安装配置花生壳软件(linux版本)三、手机端(外网)验证连接四、安装ubuntu20server版系统遇到的问题记录 一、背景概要 由于经常在遇到某些问题的时候,针对某一个场景的理解,需要借助于自己的电脑去编译(aosp/linux/qemu)代码查…

5.2.鸿蒙LiteOS-M los_dispatch

目录 一、cortex-m4 los_dispatch.S代码分析坚持就有收获 一、cortex-m4 los_dispatch.S代码分析 .syntax unified #.syntax [unified | divided], 指定arm 汇编语法规则 .arch armv7e-m #指定平台, 与命令行参数-march同样的作用 .fpu fpv4-sp-d16 #指定浮点运算…

苹果分拣检测YOLOV8NANO

苹果分拣,可以检测成熟、切片、损坏、不成熟四种类型,YOLOV8NANO,训练得到PT模型,然后转换成ONNX,OPENCV的DNN调用,支持C,PYTHON 苹果分拣检测YOLOV8NANO,检测四种类型苹果

C++ 学习之函数对象

C++ 函数对象基本概念 在C++中,函数对象(Function Objects)是一种类或结构体,它重载了函数调用运算符operator(),因此可以像函数一样被调用。函数对象有时也被称为仿函数(Functor)。 以下是关于C++函数对象的基本概念: 使用函数对象:函数对象可以像普通函数一样被调…

【Flink精讲】Flink 内存管理

面临的问题 目前, 大数据计算引擎主要用 Java 或是基于 JVM 的编程语言实现的,例如 Apache Hadoop、 Apache Spark、 Apache Drill、 Apache Flink 等。 Java 语言的好处在于程序员不需要太关注底层内存资源的管理,但同样会面临一个问题&…

从零开始学习Netty - 学习笔记 -Netty入门-EventLoop

5.Neety入门 什么是Netty Netty是一个基于Java NIO的异步事件驱动的网络应用框架。它被广泛用于开发高性能、高可靠性的网络通信程序,特别是服务器端和客户端程序。Netty提供了简洁而强大的API,使得开发者能够轻松地构建各种网络应用,包括实…

LiveQing视频点播流媒体RTMP推流服务功能-支持配置开启 HTTPS 服务什么时候需要开启HTTPS服务

LiveQing视频点播流媒体RTMP推流服务功能支持配置开启 HTTPS 服务什么时候需要开启HTTPS服务 1、配置开启HTTPS1.1、准备https证书1.1.1、选择Nginx类型证书下载 1.2、配置 开启 HTTPS1.2.1 web页面配置1.2.2 配置文件配置 2、验证HTTPS服务3、为什么要开启HTTPS3.1、安全性要求…

Mysql运维篇(四) MHA

大佬博文 https://www.cnblogs.com/gomysql/p/3675429.html MySQL 高可用(MHA) - 知乎 一、MHA简介: MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司y…

freeswitch 权威指南 --- 高级篇

官网文档:https://developer.signalwire.com/freeswitch/FreeSWITCH-Explained/ 关于 freeswitch 的公开教程:https://zhuanlan.zhihu.com/p/451981734 内容来自 《FreeSWITCH 权威指南》:目录:https://juejin.cn/post/702058079…

人力资源管理信息化系统如何支持企业开展管理诊断

人力资源顾问有限公司致力于帮助企业开展人力资源管理方面的各项提升改进工作,在长期的咨询工作中,最常听到企业提到的问题莫过于管理诊断方面的问题,事实上,很多企业在日常工作中,都意识到企业内部存在管理方面的问题…

vue3+js 实现记住密码功能

常见的几种实现方式 1 基于spring security 的remember me 功能 ​​​​​​​ localStorage 除非主动清除localStorage 里的信息 ,不然永远存在,关闭浏览器之后下次启动仍然存在 存放数据大小一般为5M 不与服务器进行交互通信 cookies 可以…

第11章 互连网络体系结构

之前,我们尚未讨论如何可靠、快速地将消息从一个节点发送到另一个节点。本章目的是讨论多个处理器互连的结构。互连网络最重要的两个性能指标是延迟和带宽。 基于共享存储多处理器的几个通信特性,与诸如局域网或因特网等其他网络系统相比,共…

react hook使用UEditor引入秀米图文排版

里面坑比较多,细节也比较多 以下使用的是react 18 ice3.0,使用其他react脚手架的配置基本相同,例如umi4 1.下载UEditor 进入UEditor仓库,找到版本v1.4.3.3,点击进去 接着下载ueditor1_4_3_3-utf8-jsp.zip版本 下载好…

CentOS 7 定时任务 + Shell 脚本自动备份 MySQL 数据库(一次 Halo 建站数据库丢失的教训)

文章目录 前置条件创建备份脚本设置 Cron 任务测试备份脚本备份安全和维护一键恢复自动清除备份文件常见问题总结 TIP: 原文链接阅读体验更佳:CentOS 7 自动备份 MySQL 数据库 最近抽空简单搭了一个博客,目前内容较少,后续陆续发…

Supermaven惊艳亮相:300,000个Tokens的超大上下文窗口,能否超越Copilot成为代码补全新王者?

当我看到GitHub宣布Copilot的年经常性收入突破1亿美元时,我意识到代码补全技术已经迈入了新的时代。 大型模型的崛起使得这些工具变得更加智能和实用,吸引了越来越多的开发者加入AI编码的行列。 在这个背景下,Supermaven发布了。这是第一个…

TikTok直播网络不稳定是什么原因

在当今社交媒体平台中,TikTok以其独特的视频内容和社交互动功能而备受欢迎。然而,尽管TikTok为用户提供了直播功能,但一些用户可能会遇到TikTok直播网络不稳定的问题。那么,TikTok直播网络不稳定的原因是什么呢?以下是…

(每日持续更新)信息系统项目管理(第四版)(高级项目管理)考试重点整理第11章 项目成本管理(五)

博主2023年11月通过了信息系统项目管理的考试,考试过程中发现考试的内容全部是教材中的内容,非常符合我学习的思路,因此博主想通过该平台把自己学习过程中的经验和教材博主认为重要的知识点分享给大家,希望更多的人能够通过考试&a…

关于Arrays类中asList(T... a)泛型参数辨析

前提 我们需要知道两点 (1)T指的是泛型类型,它只能是引用类型,何为引用类型?在java中除了基本数据类型(如byte、short、int、long、float、double、boolean、char)之外的所有类型都是引用类型…

车载电子测试学习内容

搜集了一些车载测试的学习内容,大家可以参考。

从ChatGPT到Sora,来了解大模型训练中的存储

1 从chatGPT到Sora 2022年底,OpenAI推出人工智能聊天机器人ChatGPT,开启了大模型领域的“竞速跑”模式。2024年2月15日,随着视频生成模型Sora的横空出世,OpenAI再度掀起热潮。 Sora将视频生成内容拉到了一个全新的高度&#xff0c…