代码随想录笔记--二叉树篇

目录

1--递归遍历

1-1--前序遍历

1-2--中序遍历

1-3--后序遍历

2--迭代遍历

2-1--前序遍历

2-2--后序遍历

2-3--中序遍历

3--二叉树的层序遍历

4--翻转二叉树

5--对称二叉树

6--二叉树最大深度

7--二叉树的最小深度

8--完全二叉树节点的数量

9--平衡二叉树

10--二叉树的所有路径

11--左叶子之和

12--找树左下角的值

13--路径总和

14--从中序与后序遍历序列构造二叉树

15--最大二叉树

16--合并二叉树

17--二叉搜索树中的搜索

18--验证二叉搜索树

19--二叉搜索树的最小绝对差

20--二叉搜索树中的众数

21--二叉树的最近公共祖先

22--二叉搜索树的最近公共祖先

23--二叉搜索树中的插入操作

24--删除二叉搜索树中的节点

25--修建二叉搜索树

26--将有序数组转换为二叉搜索树

27--把二叉搜索树转换为累加树


1--递归遍历

1-1--前序遍历

前序遍历:根→左→右;

#include <iostream>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution{
public:std::vector<int> preorderTraversal(TreeNode* root) {std::vector<int> res;dfs(root, res);return res;}void dfs(TreeNode* root, std::vector<int>& res){if(root == nullptr) return;res.push_back(root->val);dfs(root->left, res);dfs(root->right, res);}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.preorderTraversal(Node1);for(auto item : res) std::cout << item << " ";std::cout << std::endl;return 0;
}

1-2--中序遍历

中序遍历:左→根→右;

#include <iostream>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution{
public:std::vector<int> inorderTraversal(TreeNode* root) {std::vector<int> res;dfs(root, res);return res;}void dfs(TreeNode* root, std::vector<int>& res){if(root == nullptr) return;dfs(root->left, res);res.push_back(root->val);dfs(root->right, res);}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.inorderTraversal(Node1);for(auto item : res) std::cout << item << " ";std::cout << std::endl;return 0;
}

1-3--后序遍历

后序遍历:左→右→根;

#include <iostream>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution{
public:std::vector<int> postorderTraversal(TreeNode* root) {std::vector<int> res;dfs(root, res);return res;}void dfs(TreeNode* root, std::vector<int>& res){if(root == nullptr) return;dfs(root->left, res);dfs(root->right, res);res.push_back(root->val);}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.postorderTraversal(Node1);for(auto item : res) std::cout << item << " ";std::cout << std::endl;return 0;
}

2--迭代遍历

2-1--前序遍历

        基于栈结构,先将根节点入栈,再将节点从栈中弹出,如果节点的右孩子不为空,则右孩子入栈;如果节点的左孩子不为空,则左孩子入栈;

        循环出栈处理节点,并将右孩子和左孩子存在栈中(右孩子先进栈,左孩子再进栈,因为栈先进后出,这样可以确保左孩子先出栈,符合根→左→右的顺序);

#include <iostream>
#include <vector>
#include <stack>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution{
public:std::vector<int> preorderTraversal(TreeNode* root) {std::vector<int> res;if(root == nullptr) return res;std::stack<TreeNode*> stk;stk.push(root);while(!stk.empty()){TreeNode *tmp = stk.top();stk.pop();res.push_back(tmp->val);if(tmp->right != nullptr) stk.push(tmp->right); // 右if(tmp->left != nullptr) stk.push(tmp->left); // 左}return res;}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.preorderTraversal(Node1);for(auto item : res) std::cout << item << " ";std::cout << std::endl;return 0;
}

2-2--后序遍历

        可以使用两个栈来实现,一个是遍历栈,一个是收集栈,参考之前的笔记:后序遍历的迭代实现        

        也可以类似于前序遍历,基于一个栈实现,只不过需要改变入栈顺序:每出栈处理一个节点,其左孩子入栈,再右孩子入栈;此时处理顺序为:根->右->左,最后将结果 reverse 即可;

#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution{
public:std::vector<int> postorderTraversal(TreeNode* root) {std::vector<int> res;if(root == nullptr) return res;std::stack<TreeNode*> stk;stk.push(root);while(!stk.empty()){TreeNode* tmp = stk.top();stk.pop();if(tmp->left != nullptr) stk.push(tmp->left);if(tmp->right != nullptr) stk.push(tmp->right);res.push_back(tmp->val);}// 反转std::reverse(res.begin(), res.end());return res;}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.postorderTraversal(Node1);for(auto item : res) std::cout << item << " ";std::cout << std::endl;return 0;
}

2-3--中序遍历

基于栈结构,初始化一个栈,根节点入栈;

        ①:左子结点全部入栈;

        ②:结点出栈,处理结点;

        ③:对出栈结点的右子树重复执行第 ① 步操作;

#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution{
public:std::vector<int> inorderTraversal(TreeNode* root) {std::vector<int> res;if(root == nullptr) return res;std::stack<TreeNode*> stk;while(!stk.empty() || root != nullptr){if(root != nullptr){ // 左子结点全部入栈stk.push(root);root = root->left;}else{TreeNode *tmp = stk.top();stk.pop();res.push_back(tmp->val);// 出栈节点的右孩子执行相同操作root = tmp->right;}    }return res;}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.inorderTraversal(Node1);for(auto item : res) std::cout << item << " ";std::cout << std::endl;return 0;
}

3--二叉树的层序遍历

主要思路:

        经典广度优先搜索,基于队列;

        对于本题需要将同一层的节点放在一个数组中,因此遍历的时候需要用一个变量 nums 来记录当前层的节点数,即 nums 等于队列元素的数目;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:std::vector<std::vector<int>> levelOrder(TreeNode* root) {std::vector<std::vector<int>> res;if(root == nullptr) return res;std::queue<TreeNode*> q;q.push(root);while(!q.empty()){int nums = q.size(); // 当前层的节点数std::vector<int> tmp;while(nums > 0){ // 遍历处理同一层TreeNode *cur = q.front();q.pop();tmp.push_back(cur->val);if(cur->left != nullptr) q.push(cur->left);if(cur->right != nullptr) q.push(cur->right);nums--;}res.push_back(tmp); // 记录当前层的元素}return res;}
};int main(int argc, char* argv[]){// root = [1, null, 2, 3]TreeNode *Node1 = new TreeNode(3);TreeNode *Node2 = new TreeNode(9);TreeNode *Node3 = new TreeNode(20);TreeNode *Node4 = new TreeNode(15);TreeNode *Node5 = new TreeNode(7);Node1->left = Node2;Node1->right = Node3;Node3->left = Node4;Node3->right = Node5;Solution S1;std::vector<std::vector<int>> res = S1.levelOrder(Node1);for(auto item : res) {for (int v : item) std::cout << v << " ";std::cout << std::endl;}return 0;
}

4--翻转二叉树

主要思路:

        递归交换左右子树;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* invertTree(TreeNode* root) {reverse(root);return root;}void reverse(TreeNode *root){if(root == nullptr) return;reverse(root->left);reverse(root->right);TreeNode *tmp = root->left;root->left = root->right;root->right = tmp;}
};// 层次遍历打印
void PrintTree(TreeNode *root){std::queue<TreeNode*> q;q.push(root);while(!q.empty()) {TreeNode *tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr) q.push(tmp->left);if(tmp->right != nullptr) q.push(tmp->right);}
}int main(int argc, char* argv[]){// root = [4,2,7,1,3,6,9]TreeNode *Node1 = new TreeNode(4);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(7);TreeNode *Node4 = new TreeNode(1);TreeNode *Node5 = new TreeNode(3);TreeNode *Node6 = new TreeNode(6);TreeNode *Node7 = new TreeNode(9);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Node3->right = Node7;Solution S1;TreeNode *res = S1.invertTree(Node1);PrintTree(res);
}

5--对称二叉树

主要思路:

        递归判断左树的左子树是否与右数的右子树相等,左树的右子树是否与右树的左子树相等;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:bool isSymmetric(TreeNode* root) {if(root == nullptr) return true;bool res = dfs(root->left, root->right);return res;}bool dfs(TreeNode *left, TreeNode *right){if((left != nullptr && right == nullptr) ||(left == nullptr && right != nullptr)) return false;if(left == nullptr && right == nullptr) return true;if (left->val != right->val) return false;bool isSame1 = dfs(left->left, right->right);bool isSame2 = dfs(left->right, right->left);return isSame1 && isSame2;}
};int main(int argc, char* argv[]){// root = [4,2,7,1,3,6,9]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(2);TreeNode *Node4 = new TreeNode(3);TreeNode *Node5 = new TreeNode(4);TreeNode *Node6 = new TreeNode(4);TreeNode *Node7 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Node3->right = Node7;Solution S1;bool res = S1.isSymmetric(Node1);if(res) std::cout << "true" << std::endl;else std::cout << "false" << std::endl;
}

6--二叉树最大深度

主要思路:

        递归计算左右子树的深度,选取两者最大值 +1 返回;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int maxDepth(TreeNode* root) {if(root == nullptr) return 0;int res = dfs(root);return res;}int dfs(TreeNode* root){if(root == nullptr) return 0;int left_height = dfs(root->left);int right_height = dfs(root->right);int cur_height = std::max(left_height, right_height) + 1;return cur_height;}
};int main(int argc, char* argv[]){// root = [3,9,20,null,null,15,7]TreeNode *Node1 = new TreeNode(3);TreeNode *Node2 = new TreeNode(9);TreeNode *Node3 = new TreeNode(20);TreeNode *Node4 = new TreeNode(15);TreeNode *Node5 = new TreeNode(7);Node1->left = Node2;Node1->right = Node3;Node3->left = Node4;Node3->right = Node5;Solution S1;int res = S1.maxDepth(Node1);std::cout << res << std::endl;return 0;
}

7--二叉树的最小深度

主要思路:

        与上题有点类似,递归返回最小深度即可,但需要剔除根节点一个子树为空的情况;

        对于一个根节点,其中一个子树为空,则其最小深度是不为空的子树的深度;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int minDepth(TreeNode* root) {if(root == nullptr) return 0;return dfs(root);}int dfs(TreeNode *root){if(root == nullptr) return 0;// 剔除两种情况if(root->left == nullptr) return dfs(root->right) + 1;else if(root->right == nullptr) return dfs(root->left) + 1;else{int left_height = dfs(root->left);int right_height = dfs(root->right);int cur_min_height = std::min(left_height, right_height) + 1;return cur_min_height;}}
};int main(int argc, char* argv[]){// root = [3,9,20,null,null,15,7]TreeNode *Node1 = new TreeNode(3);TreeNode *Node2 = new TreeNode(9);TreeNode *Node3 = new TreeNode(20);TreeNode *Node4 = new TreeNode(15);TreeNode *Node5 = new TreeNode(7);Node1->left = Node2;Node1->right = Node3;Node3->left = Node4;Node3->right = Node5;Solution S1;int res = S1.minDepth(Node1);std::cout << res << std::endl;return 0;
}

8--完全二叉树节点的数量

主要思路:

        普通二叉树可以通过层次遍历来统计节点数目;

        对于本题中的完全二叉树,可以通过 2**k - 1 的公式来计算二叉树节点的数目;

        首先需判断一个子树是否为完全二叉树,如果是则通过上式计算;如果不是完全二叉树,则对于当前子树,需要分别向左右子树递归计算其节点数目(相当于获取信息),最后将结果相加(相当于处理信息),并加上1返回即可;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int countNodes(TreeNode* root) {if(root == nullptr) return 0;return dfs(root);}int dfs(TreeNode *root){if(root == nullptr) return 0;TreeNode *left = root->left, *right = root->right;int left_height = 0, right_height = 0;while(left != nullptr){left = left->left;left_height++;}while(right != nullptr){right = right->right;right_height++;}if(left_height == right_height) return (2<<left_height) - 1; // 满二叉树int left_nums = dfs(root->left);int right_nums = dfs(root->right);return left_nums + right_nums + 1;}
};int main(int argc, char* argv[]){// root = [1,2,3,4,5,6]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);TreeNode *Node4 = new TreeNode(4);TreeNode *Node5 = new TreeNode(5);TreeNode *Node6 = new TreeNode(6);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Solution S1;int res = S1.countNodes(Node1);std::cout << res << std::endl;return 0;
}

9--平衡二叉树

主要思路:

        通过高度差不大于1,来递归判断子树是否是平衡二叉树,不是则返回-1,是则返回对应的高度;

#include <iostream>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:bool isBalanced(TreeNode* root) {if(root == nullptr) return true;int height = dfs(root);return height == -1 ? false : true;}int dfs(TreeNode *root){if(root == nullptr) return 0;int left_height = dfs(root->left);if(left_height == -1) return -1;int right_height = dfs(root->right);if(right_height == -1) return -1;if(std::abs(left_height - right_height) > 1) return -1;else return std::max(left_height, right_height) + 1;}
};int main(int argc, char* argv[]){// root = [3,9,20,null,null,15,7]TreeNode *Node1 = new TreeNode(3);TreeNode *Node2 = new TreeNode(9);TreeNode *Node3 = new TreeNode(20);TreeNode *Node4 = new TreeNode(15);TreeNode *Node5 = new TreeNode(7);Node1->left = Node2;Node1->right = Node3;Node3->left = Node4;Node3->right = Node5;Solution S1;bool res = S1.isBalanced(Node1);if(res) std::cout << "true" << std::endl;else std::cout << "false" << std::endl;return 0;
}

10--二叉树的所有路径

主要思路:

        递归记录路径;

#include <iostream>
#include <vector>
#include <string>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:std::vector<std::string> binaryTreePaths(TreeNode* root) {std::vector<std::string> res;if(root == nullptr) return res;std::string path = "";dfs(root, res, path);return res;}void dfs(TreeNode *root, std::vector<std::string>& res, std::string path){if(root == nullptr) return;path += std::to_string(root->val);if(root->left == nullptr && root->right == nullptr) { // 叶子节点,回收路径res.push_back(path);return;}else path += "->";dfs(root->left, res, path);dfs(root->right, res, path);}
};int main(int argc, char* argv[]){// root = [1,2,3,null,5]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(3);TreeNode *Node4 = new TreeNode(5);Node1->left = Node2;Node1->right = Node3;Node2->right = Node4;Solution S1;std::vector<std::string> res = S1.binaryTreePaths(Node1);for(auto path : res) std::cout << path << std::endl;return 0;
}

11--左叶子之和

主要思路:

        递归到叶子节点的上一层,返回其左叶子之和;

#include <iostream>
#include <vector>
#include <string>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if(root == nullptr) return 0;return dfs(root);}int dfs(TreeNode* root){if(root == nullptr) return 0;if(root->left == nullptr && root->right == nullptr) return 0;int sum = 0;if(root->left != nullptr && root->left->left == nullptr && root->left->right == nullptr){sum = root->left->val;}int left = dfs(root->left);int right = dfs(root->right);return left + right + sum;}
};int main(int argc, char* argv[]){// root = [3,9,20,null,null,15,7]TreeNode *Node1 = new TreeNode(3);TreeNode *Node2 = new TreeNode(9);TreeNode *Node3 = new TreeNode(20);TreeNode *Node4 = new TreeNode(15);TreeNode *Node5 = new TreeNode(7);Node1->left = Node2;Node1->right = Node3;Node3->left = Node4;Node3->right = Node5;Solution S1;int res = S1.sumOfLeftLeaves(Node1);std::cout << res << std::endl;return 0;
}

12--找树左下角的值

主要思路:

        递归到最大深度层,优先返回最左边的节点值,即递归时优先搜索左子树;

#include <iostream>
#include <vector>
#include <limits.h>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int findBottomLeftValue(TreeNode* root) {if(root == nullptr) return 0;int max_height = INT_MIN;int result = 0;dfs(root, 0, max_height, result);return result;}void dfs(TreeNode* root, int curheight, int& max_height, int& res){if(root == nullptr) return;if(root->left == nullptr && root->right == nullptr){ // 叶子节点if(curheight + 1 > max_height){max_height = curheight + 1;res = root->val;return;}}dfs(root->left, curheight+1, max_height, res);dfs(root->right, curheight+1, max_height, res);  }
};int main(int argc, char* argv[]){// root = [3,9,20,null,null,15,7]TreeNode *Node1 = new TreeNode(2);TreeNode *Node2 = new TreeNode(1);TreeNode *Node3 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Solution S1;int res = S1.findBottomLeftValue(Node1);std::cout << res << std::endl;return 0;
}

13--路径总和

主要思路:

        递归搜索,判断路径和是否等于目标值即可;

#include <iostream>
#include <vector>
#include <limits.h>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:bool hasPathSum(TreeNode* root, int targetSum) {if(root == nullptr) return false;return dfs(root, targetSum);}bool dfs(TreeNode* root, int targetSum){if(root == nullptr) return false;if(root->left == nullptr && root->right == nullptr && targetSum == root->val){return true;}bool left = dfs(root->left, targetSum - root->val);if(left) return true;bool right = dfs(root->right, targetSum - root->val);if(right) return true;return false;}
};int main(int argc, char* argv[]){// root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22TreeNode *Node1 = new TreeNode(5);TreeNode *Node2 = new TreeNode(4);TreeNode *Node3 = new TreeNode(8);TreeNode *Node4 = new TreeNode(11);TreeNode *Node5 = new TreeNode(13);TreeNode *Node6 = new TreeNode(4);TreeNode *Node7 = new TreeNode(7);TreeNode *Node8 = new TreeNode(2);TreeNode *Node9 = new TreeNode(1);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node3->left = Node5;Node3->right = Node6;Node4->left = Node7;Node4->right = Node8;Node6->right = Node9;int target = 22;Solution S1;bool res = S1.hasPathSum(Node1, target);if(res) std::cout << "True" << std::endl;else std::cout << "false" << std::endl;return 0;
}

14--从中序与后序遍历序列构造二叉树

主要思路:

        中序遍历的顺序为:左→根→右,后序遍历的顺序为:左→右→根;即后序遍历的最后一个节点是根节点,因此可以根据根节点来划分中序遍历,将其划分为左子树和右子树,再根据左右子树的大小来划分后序遍历,递归构建二叉树;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* buildTree(std::vector<int>& inorder, std::vector<int>& postorder) {TreeNode *root = dfs(inorder, postorder);return root;}TreeNode* dfs(std::vector<int>& inorder, std::vector<int>& postorder){if(postorder.size() == 0) return nullptr;TreeNode *root = new TreeNode(postorder[postorder.size() - 1]); // 根节点if(postorder.size() == 1) return root;// 划分中序遍历int idx;for(idx = 0; idx < inorder.size(); idx++){if(inorder[idx] == root->val) break; // 找到中序遍历的根节点}// 划分后序遍历std::vector<int> left_inorder(inorder.begin(), inorder.begin()+idx); // 左子树的中序std::vector<int> right_inorder(inorder.begin()+idx+1, inorder.end()); // 右子树的中序std::vector<int> left_postorder(postorder.begin(), postorder.begin() + left_inorder.size()); // 左子树的后序std::vector<int> right_postorder(postorder.begin() + left_inorder.size(), postorder.end() - 1); // 右子树的后序root->left = dfs(left_inorder, left_postorder);root->right = dfs(right_inorder, right_postorder);return root;}
};int main(int argc, char* argv[]){// inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]std::vector<int> inorder = {9, 3, 15, 20, 7};std::vector<int> postorder = {9, 15, 7, 20, 3};Solution S1;TreeNode *root = S1.buildTree(inorder, postorder);// 层次遍历std::queue<TreeNode*> q;q.push(root);while(!q.empty()){TreeNode *tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr) q.push(tmp->left);if(tmp->right != nullptr) q.push(tmp->right);}std::cout << std::endl;return 0;
}

15--最大二叉树

主要思路:

        递归构建二叉树,首先寻找数组中的最大值,根据最大值划分左子树和右子树,递归构建左子树和右子树;

#include <iostream>
#include <vector>
#include <queue>
#include <limits.h>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* constructMaximumBinaryTree(std::vector<int>& nums) {TreeNode *root = dfs(nums);return root;}TreeNode* dfs(std::vector<int>& nums){if(nums.size() == 1){TreeNode* root = new TreeNode(nums[0]);return root;}// 遍历寻找最大值int max_idx = 0, max_value = INT_MIN;for(int i = 0; i < nums.size(); i++){if(nums[i] > max_value) {max_value = nums[i];max_idx = i;}}TreeNode *root = new TreeNode(nums[max_idx]);if(max_idx > 0){std::vector<int> left_nums(nums.begin(), nums.begin() + max_idx);root->left = dfs(left_nums);}if(max_idx < nums.size() - 1){std::vector<int> right_nums(nums.begin() + max_idx + 1, nums.end());root->right = dfs(right_nums);}return root;}
};int main(int argc, char* argv[]){// nums = [3,2,1,6,0,5]std::vector<int> nums = {3, 2, 1, 6, 0, 5};Solution S1;TreeNode *root = S1.constructMaximumBinaryTree(nums);// 层次遍历std::queue<TreeNode*> q;q.push(root);while(!q.empty()){TreeNode *tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr) q.push(tmp->left);if(tmp->right != nullptr) q.push(tmp->right);}std::cout << std::endl;return 0;
}

16--合并二叉树

主要思路:

        递归构建二叉树,两颗子树均不为 null 时,则构建新节点,其值为传入的两根节点之和;

        当其中一颗子树为空时,返回另一颗子树;

#include <iostream>
#include <vector>
#include <queue>
#include <limits.h>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {return dfs(root1, root2);}TreeNode* dfs(TreeNode* root1, TreeNode* root2){if(root1 == nullptr) return root2;if(root2 == nullptr) return root1;TreeNode *root = new TreeNode(root1->val + root2->val);root->left = dfs(root1->left, root2->left);root->right = dfs(root1->right, root2->right);return root;}    
};int main(int argc, char* argv[]){// root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]TreeNode* Node1_1 = new TreeNode(1);TreeNode* Node1_2 = new TreeNode(3);TreeNode* Node1_3 = new TreeNode(2);TreeNode* Node1_4 = new TreeNode(5);Node1_1->left = Node1_2;Node1_1->right = Node1_3;Node1_2->left = Node1_4;TreeNode* Node2_1 = new TreeNode(2);TreeNode* Node2_2 = new TreeNode(1);TreeNode* Node2_3 = new TreeNode(3);TreeNode* Node2_4 = new TreeNode(4);TreeNode* Node2_5 = new TreeNode(7);Node2_1->left = Node2_2;Node2_1->right = Node2_3;Node2_2->right = Node2_4;Node2_3->right = Node2_5;Solution S1;TreeNode *root = S1.mergeTrees(Node1_1, Node2_1);// 层次遍历std::queue<TreeNode*> q;q.push(root);while(!q.empty()){TreeNode *tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr) q.push(tmp->left);if(tmp->right != nullptr) q.push(tmp->right);}std::cout << std::endl;return 0;
}

17--二叉搜索树中的搜索

主要思路:

        根据节点大小,递归从左子树或者右子树寻找;

#include <iostream>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {return dfs(root, val);}TreeNode* dfs(TreeNode* root, int val){if(root == nullptr || root->val == val) return root;if(root->val > val){return dfs(root->left, val);}else return dfs(root->right, val);}
};int main(int argc, char* argv[]){// root = [4,2,7,1,3], val = 2TreeNode *Node1 = new TreeNode(4);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(7);TreeNode *Node4 = new TreeNode(1);TreeNode *Node5 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;int val = 2;Solution S1;TreeNode *res = S1.searchBST(Node1, val);if(res == nullptr) std::cout << "" << std::endl;else std::cout << res->val << std::endl;return 0;
}

18--验证二叉搜索树

主要思路:

        递归判断,确保自下而上左子树节点都小于根节点,右子树节点都大于根节点;

#include <iostream>
#include <limits.h>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:bool isValidBST(TreeNode* root) {long long max_value = LONG_MAX, min_value = LONG_MIN;return dfs(root, max_value, min_value);}bool dfs(TreeNode *root, long long max_value, long long min_value){if(root == nullptr) return true;if(root->val >= max_value || root->val <= min_value) return false;bool left = dfs(root->left, root->val, min_value);bool right = dfs(root->right, max_value, root->val);return left && right;}
};int main(int argc, char* argv[]){// root = [2, 1, 3]TreeNode *Node1 = new TreeNode(2);TreeNode *Node2 = new TreeNode(1);TreeNode *Node3 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Solution S1;bool res = S1.isValidBST(Node1);if(res) std::cout << "true" << std::endl;else std::cout << "false" << std::endl;return 0;
}

19--二叉搜索树的最小绝对差

主要思路1:

        利用中序遍历将二叉搜索树的元素存放在一个递增的数组中,然后遍历递增数组,计算相邻两节点的差值即可;

#include <iostream>
#include <limits.h>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int getMinimumDifference(TreeNode* root) {std::vector<int> res;int min = INT_MAX;dfs(root, res);for(int i = 1; i < res.size(); i++){if(res[i] - res[i-1] < min){min = res[i] - res[i-1];}}return min;}void dfs(TreeNode *root, std::vector<int> &res){if(root == nullptr) return;dfs(root->left, res);res.push_back(root->val);dfs(root->right, res);}
};int main(int argc, char* argv[]){// root = [4,2,6,1,3]TreeNode *Node1 = new TreeNode(4);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(6);TreeNode *Node4 = new TreeNode(1);TreeNode *Node5 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Solution S1;int res = S1.getMinimumDifference(Node1);std::cout << res << std::endl;return 0;
}

主要思路2:

        利用双指针递归,记录中序遍历的前一个节点和当前节点,计算两个节点的差值,并更新最小值即可;

#include <iostream>
#include <limits.h>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:int getMinimumDifference(TreeNode* root) {dfs(root);return min;}void dfs(TreeNode *cur){if(cur == nullptr) return;dfs(cur->left);if(pre != nullptr){min = std::min(min, cur->val - pre->val);}pre = cur;dfs(cur->right);}private:int min = INT_MAX;TreeNode *pre = nullptr;
};int main(int argc, char* argv[]){// root = [4,2,6,1,3]TreeNode *Node1 = new TreeNode(4);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(6);TreeNode *Node4 = new TreeNode(1);TreeNode *Node5 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Solution S1;int res = S1.getMinimumDifference(Node1);std::cout << res << std::endl;return 0;
}

20--二叉搜索树中的众数

主要思路:

        基于双指针中序遍历二叉搜索树,判断pre指针和cur指针指向的节点是否相同,如果相同,则当前节点的 count++,否则 count = 1;

        当某个节点的出现频率与max_count相同时,将其放入结果数组;

        更新众数时需要清空结果数组,并放入最大众数对应的节点;

#include <iostream>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:std::vector<int> findMode(TreeNode* root) {dfs(root);return res;}void dfs(TreeNode* cur){if(cur == nullptr) return;// 左dfs(cur->left);if(pre == nullptr || cur->val != pre->val){count = 1;}else{count++;}if(count == max_count) res.push_back(cur->val);if(count > max_count){max_count = count;res.clear();res.push_back(cur->val);}pre = cur; // 双指针dfs(cur->right);}private:int max_count = 0;int count = 0;std::vector<int> res;TreeNode *pre = nullptr;
};int main(int argc, char* argv[]){// root = [1,null,2,2]TreeNode *Node1 = new TreeNode(1);TreeNode *Node2 = new TreeNode(2);TreeNode *Node3 = new TreeNode(2);Node1->right = Node2;Node2->left = Node3;Solution S1;std::vector<int> res = S1.findMode(Node1);for(int v : res) std::cout << v << " ";std::cout << std::endl;return 0;
}

21--二叉树的最近公共祖先

主要思路:

        递归自底向上寻找,找到目标节点就返回;对于一个节点,若其左右子树均找到目标节点,则该节点即为最近公共祖先;

        若只有一颗子树能找到目标节点,则该子树的返回结果就是最近公共祖先;

#include <iostream>
#include <string>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {TreeNode* res = dfs(root, p, q);return res;}TreeNode* dfs(TreeNode* root, TreeNode* p, TreeNode* q){if(root == nullptr) return nullptr;if(root->val == p->val || root->val == q->val) return root;TreeNode* left = dfs(root->left, p, q);TreeNode* right = dfs(root->right, p, q);if(left != nullptr && right != nullptr) return root;else if(left != nullptr && right == nullptr) return left;else return right;}
};int main(int argc, char* argv[]){// root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1TreeNode* Node1 = new TreeNode(3);TreeNode* Node2 = new TreeNode(5);TreeNode* Node3 = new TreeNode(1);TreeNode* Node4 = new TreeNode(6);TreeNode* Node5 = new TreeNode(2);TreeNode* Node6 = new TreeNode(0);TreeNode* Node7 = new TreeNode(8);TreeNode* Node8 = new TreeNode(7);TreeNode* Node9 = new TreeNode(4);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Node3->right  = Node7;Node5->left = Node8;Node5->right = Node9;Solution S1;TreeNode *res = S1.lowestCommonAncestor(Node1, Node2, Node3);if(res != nullptr) std::cout << res->val << std::endl;else std::cout << "null" << std::endl;return 0;
}

22--二叉搜索树的最近公共祖先

主要思路:

        递归寻找,根据节点大小判断在左子树还是右子树寻找目标节点;

        对于一个节点,假如其值在两个目标节点中间,则该节点为最近公共祖先;

#include <iostream>
#include <string>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {TreeNode* res = dfs(root, p, q);return res;}TreeNode* dfs(TreeNode* root, TreeNode* p, TreeNode* q){if(root == nullptr) return nullptr;if(root->val > p->val && root->val > q->val){return dfs(root->left, p, q);}else if(root->val < p->val && root->val < q->val){return dfs(root->right, p, q);}else return root;}
};int main(int argc, char* argv[]){// root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8TreeNode* Node1 = new TreeNode(6);TreeNode* Node2 = new TreeNode(2);TreeNode* Node3 = new TreeNode(8);TreeNode* Node4 = new TreeNode(0);TreeNode* Node5 = new TreeNode(4);TreeNode* Node6 = new TreeNode(7);TreeNode* Node7 = new TreeNode(9);TreeNode* Node8 = new TreeNode(3);TreeNode* Node9 = new TreeNode(5);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Node3->right  = Node7;Node5->left = Node8;Node5->right = Node9;Solution S1;TreeNode *res = S1.lowestCommonAncestor(Node1, Node2, Node3);if(res != nullptr) std::cout << res->val << std::endl;else std::cout << "null" << std::endl;return 0;
}

23--二叉搜索树中的插入操作

主要思路:

        任意一个节点的插入位置都能在叶子节点上找到,因此只需要递归遍历找到合适的叶子节点位置,将插入节点放到叶子节点位置即可;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* insertIntoBST(TreeNode* root, int val) {return dfs(root, val);}TreeNode* dfs(TreeNode* root, int val){if(root == nullptr){ // 找到叶子节点位置了TreeNode* target = new TreeNode(val);return target;}if(root->val > val){root->left = dfs(root->left, val);}else if(root->val < val){root->right = dfs(root->right, val);}return root;}
};int main(int argc, char* argv[]){TreeNode* Node1 = new TreeNode(4);TreeNode* Node2 = new TreeNode(2);TreeNode* Node3 = new TreeNode(7);TreeNode* Node4 = new TreeNode(1);TreeNode* Node5 = new TreeNode(3);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;int val = 5;Solution S1;TreeNode *res = S1.insertIntoBST(Node1, val);// 层次遍历std::queue<TreeNode *> q;q.push(res);while(!q.empty()){TreeNode* tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr){q.push(tmp->left);}if(tmp->right != nullptr){q.push(tmp->right);}}std::cout << std::endl;return 0;
}

24--删除二叉搜索树中的节点

主要思路:

        删除节点有以下 5 种情况:

① 找不到删除的节点,返回 nullptr;

② 删除节点的左右孩子均为空(即为叶子节点),返回 nullptr;

③ 删除节点的左不空,右空,返回左孩子;

④ 删除节点的右不空,左空,返回右孩子;

⑤ 删除节点的左右均不空,记录删除节点的左孩子,然后递归删除节点的右孩子,找到最左边的叶子节点,将原先记录的删除节点的左孩子放到叶子结点的左孩子中;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* deleteNode(TreeNode* root, int key) {return dfs(root, key);}TreeNode* dfs(TreeNode* root, int key){if(root == nullptr) return nullptr; // 删除节点不存在if(root->val == key){ // 找到删除的叶子节点if(root->left == nullptr && root->right == nullptr){TreeNode *tmp = root;delete(tmp);return nullptr;}else if(root->left != nullptr && root->right == nullptr){TreeNode *tmp = root;TreeNode *left = root->left;delete(tmp);return left;}else if(root->left == nullptr && root->right != nullptr){TreeNode *tmp = root;TreeNode *right = root->right;delete(tmp);return right;}else{ // root->left != nullptr && root->right != nullptrTreeNode* left = root->left; // 记录其左子树TreeNode* right = root->right;TreeNode* cur = root->right;while(cur -> left != nullptr){ // 递归其右子树cur = cur->left;}cur->left = left; // 将左子树作为右子树最左边的叶子节点的左孩子delete(root);return right; // 返回右子树}}if(root->val > key) root->left = dfs(root->left, key);else root->right = dfs(root->right, key);return root;}  
};int main(int argc, char* argv[]){TreeNode* Node1 = new TreeNode(5);TreeNode* Node2 = new TreeNode(3);TreeNode* Node3 = new TreeNode(6);TreeNode* Node4 = new TreeNode(2);TreeNode* Node5 = new TreeNode(4);TreeNode* Node6 = new TreeNode(7);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->right = Node6;int key = 3;Solution S1;TreeNode *res = S1.deleteNode(Node1, key);// 层次遍历std::queue<TreeNode *> q;q.push(res);while(!q.empty()){TreeNode* tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr){q.push(tmp->left);}if(tmp->right != nullptr){q.push(tmp->right);}}std::cout << std::endl;return 0;
}

25--修建二叉搜索树

主要思路:

        对于小于左边界的节点,则其左子树所有节点都会小于左边界,因此可以舍弃;但仍需要递归判断其右子树;

        对于大于右边界的节点,则其右子树所有节点都会大于右边界,因此可以舍弃;但仍需要递归判断其左子树;

#include <iostream>
#include <vector>
#include <queue>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* trimBST(TreeNode* root, int low, int high) {return dfs(root, low, high);}TreeNode* dfs(TreeNode* root, int low, int high){if(root == nullptr) return nullptr;if(root->val < low){return dfs(root->right, low, high);}if(root->val > high){return dfs(root->left, low, high);}root->left = dfs(root->left, low, high);root->right = dfs(root->right, low, high);return root;}
};int main(int argc, char* argv[]){// root = [1,0,2], low = 1, high = 2TreeNode* Node1 = new TreeNode(1);TreeNode* Node2 = new TreeNode(0);TreeNode* Node3 = new TreeNode(2);Node1->left = Node2;Node1->right = Node3;int low = 1, high = 2;Solution S1;TreeNode *res = S1.trimBST(Node1, low, high);// 层次遍历std::queue<TreeNode *> q;q.push(res);while(!q.empty()){TreeNode* tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr){q.push(tmp->left);}if(tmp->right != nullptr){q.push(tmp->right);}}std::cout << std::endl;return 0;
}

26--将有序数组转换为二叉搜索树

主要思路:

        二分有序数组,递归构造左子树和右子树;

#include <iostream>
#include <queue>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* sortedArrayToBST(std::vector<int>& nums) {TreeNode* res = dfs(nums, 0, nums.size() - 1);return res;}TreeNode* dfs(std::vector<int>& nums, int left, int right){if(left > right) {return nullptr;}int mid = left + (right - left) / 2;TreeNode* root = new TreeNode(nums[mid]);root->left = dfs(nums, left, mid - 1);root->right = dfs(nums, mid + 1, right);return root;}
};int main(int argc, char* argv[]){// nums = [-10,-3,0,5,9]std::vector<int> nums = {-10, -3, 0, 5, 9};Solution S1;TreeNode *res = S1.sortedArrayToBST(nums);// 层次遍历二叉树std::queue<TreeNode*> q;q.push(res);while(!q.empty()){TreeNode* tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr) q.push(tmp->left);if(tmp->right != nullptr) q.push(tmp->right);}return 0;
}

27--把二叉搜索树转换为累加树

主要思路:

       二叉搜索树按照 左→根→右 的顺序遍历是一个升序数组,则按照右 → 根 → 左的顺序遍历就是一个降序数组;

        因此可以按照降序的顺序遍历,将当前节点的值更新为当前节点的值+前一个节点的值

        用一个变量 pre 来记录上一个节点的值(类似于求二叉树众数的双指针),每遍历一个节点,更新 pre 的值;

#include <iostream>
#include <queue>
#include <vector>struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptr) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};class Solution {
public:TreeNode* convertBST(TreeNode* root) {dfs(root);return root;}void dfs(TreeNode* cur){if(cur == nullptr) return;// 右dfs(cur->right);// 中cur->val = pre + cur->val;pre = cur->val; // 更新pre// 左dfs(cur->left);}
private:int pre = 0;
};int main(int argc, char* argv[]){// [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]TreeNode* Node1 = new TreeNode(4);TreeNode* Node2 = new TreeNode(1);TreeNode* Node3 = new TreeNode(6);TreeNode* Node4 = new TreeNode(0);TreeNode* Node5 = new TreeNode(2);TreeNode* Node6 = new TreeNode(5);TreeNode* Node7 = new TreeNode(7);TreeNode* Node8 = new TreeNode(3);TreeNode* Node9 = new TreeNode(8);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;Node3->right = Node7;Node5->right = Node8;Node7->right = Node9;Solution S1;TreeNode *res = S1.convertBST(Node1);// 层次遍历二叉树std::queue<TreeNode*> q;q.push(res);while(!q.empty()){TreeNode* tmp = q.front();q.pop();std::cout << tmp->val << " ";if(tmp->left != nullptr) q.push(tmp->left);if(tmp->right != nullptr) q.push(tmp->right);}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/70009.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyCharm 虚拟环境搭建

Anaconda搭建虚拟环境 安装 前往Anaconda官网&#xff08;https://www.anaconda.com/products/individual&#xff09;&#xff0c;下载适合您操作系统的Anaconda版本&#xff0c;建议下载最新的稳定版。这里可以直接进入这个&#xff1a;https://repo.anaconda.com/archive/ …

AVR128单片机 USART通信控制发光二极管显示

一、系统方案 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 void port_init(void) { PORTA 0xFF; DDRA 0x00;//输入 PORTB 0xFF;//低电平 DDRB 0x00;//输入 PORTC 0xFF;//低电平 DDRC 0xFF;//输出 PORTE 0xFF; DDRE 0xfE;//输出 PO…

无涯教程-JavaScript - DCOUNT函数

描述 DCOUNT函数返回包含与您指定条件匹配的列表或数据库的列中的数字的单元格的计数。 语法 DCOUNT (database, field, criteria)争论 Argument描述Required/Optionaldatabase 组成列表或数据库的单元格范围。 数据库是相关数据的列表,其中相关信息的行是记录,数据的列是…

编译CentOS6.10系统的OpenSSHV9.4rpm安装包

目前OpenSSH版本已至9.4&#xff0c;其作为操作系统底层管理平台软件&#xff0c;需要保持更新以免遭受安全攻击&#xff0c;编译生成rpm包是生产环境中批量升级的最佳途径。编译软件包时与当前的运行环境有较大关系&#xff0c;请注意本安装包系在CentOS6.10原生系统纯净系统下…

Ubuntu下QT操作Mysql数据库

本篇总结一下一下Ubuntu下QT操作Mysql数据库。 目录 1. 启动Mysql数据库服务器 2.查看QT支持的数据库驱动 3.连接数据库 4. 增加表和记录 5. 删除记录 6. 修改记录 7. 查询记录 8.完整代码和运行效果 常见错误总结&#xff1a; (1) 数据库服务没启动报错信息 (2) 有…

【Vuex状态管理】Vuex的基本使用;核心概念State、Getters、Mutations、Actions、Modules的基本使用

目录 1_应用状态管理1.1_状态管理1.2_复杂的状态管理1.3_Vuex的状态管理 2_Vuex的基本使用2.1_安装2.2_创建Store2.3_组件中使用store 3_核心概念State3.1_单一状态树3.2_组件获取状态3.3_在setup中使用mapState 4_核心概念Getters4.1_getters的基本使用4.2_getters第二个参数4…

SpringBoot整合MQ

1.创建工程并引入依赖 <!-- 添加rocketmq的启动器--><dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-starter</artifactId><version>2.1.1</version></dependency>2.编写…

Unity汉化一个插件 制作插件汉化工具

我是编程一个菜鸟&#xff0c;英语又不好&#xff0c;有的插件非常牛&#xff01;我想学一学&#xff0c;页面全是英文&#xff0c;完全不知所措&#xff0c;我该怎么办啊...尝试在Unity中汉化一个插件 效果&#xff1a; 思路&#xff1a; 如何在Unity中把一个自己喜欢的插件…

SQL Server如何新建作业

作业&#xff1a; 在 SQL Server 中&#xff0c;作业&#xff08;Job&#xff09;是一组可以在预定时间自动执行的任务。可以将作业看作是一个可以在后台运行的程序或脚本。作业由一系列步骤组成&#xff0c;每个步骤都是一个独立的任务&#xff0c;可以执行诸如执行 SQL 查询…

架构师如何做好需求分析

架构师如何做好需求分析 目录概述需求&#xff1a; 设计思路实现思路分析1.主要步骤 2.主要步骤2操作步骤 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,…

【已解决】使用xshell来ssh到vmware的虚拟机,请求超时的问题

我的情况&#xff1a; 1.本地ping虚拟机请求超时&#xff0c;但是虚拟机ping本地成功 2.本地和虚拟机的防火墙都关了&#xff0c;ssh服务也开了 3.端口也是正确的 百思不得其解&#xff0c;不知道为什么就是连接不上 当出现这种情况的时候&#xff0c;可以考虑一下vmware的…

【Java】Jxls--轻松生成 Excel

1、介绍 Jxls 是一个小型 Java 库&#xff0c;可以轻松生成 Excel 报告。Jxls 在 Excel 模板中使用特殊标记来定义输出格式和数据布局。 Java 有一些用于创建 Excel 文件的库&#xff0c;例如Apache POI。这些库都很好&#xff0c;但都是一些较底层的库&#xff0c;因为它们要…

Vue3【Provide/Inject】

前言 自从使用了Provide/Inject代码的组织方式更加灵活了&#xff0c;但是这个灵活性的增加伴随着代码容错性的降低。我相信只要是真的在项目中引入Provide/Inject的同学&#xff0c;一定一定有过或者正在经历下面的状况&#xff1a; 注入名&#xff08;Injection key&#x…

C++中虚继承时的构造函数

在虚继承中,虚基类是由最终的派生类初始化的,换句话说,最终派生类的构造函数必须要调用虚基类的构造函数。对最终的派生类来说,虚基类是间接基类,而不是直接基类。这跟普通继承不同,在普通继承中,派生类构造函数中只能调用直接基类的构造函数,不能调用间接基类的。 下面…

VBA技术资料MF51:VBA_在Excel中突出显示唯一值

【分享成果&#xff0c;随喜正能量】世间万物&#xff0c;因果循环不休&#xff0c;你的善心善行&#xff0c;都可能成为你的善缘善果。每天忆佛念佛&#xff0c;每天都在佛菩萨的加持下生活&#xff0c;自然吉祥如意&#xff0c;法喜充满。 。 我给VBA的定义&#xff1a;VBA是…

重磅| Falcon 180B 正式在 Hugging Face Hub 上发布!

引言 我们很高兴地宣布由 Technology Innovation Institute (TII) 训练的开源大模型 Falcon 180B 登陆 Hugging Face&#xff01; Falcon 180B 为开源大模型树立了全新的标杆。作为当前最大的开源大模型&#xff0c;有180B 参数并且是在在 3.5 万亿 token 的 TII RefinedWeb 数…

3D点云处理:点云投影为2D图像 调平点云(附源码)

文章目录 0. 测试效果1. 基本内容1.1 计算点云位姿1.2 调平点云1.3 点云投影2. 代码实现文章目录:3D视觉个人学习目录微信:dhlddxB站: Non-Stop_0. 测试效果

如何远程访问Linux MeterSphere一站式开源持续测试平台

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

使用 WebGL 为 HTML5 游戏创建逼真的地形

推荐&#xff1a;使用 NSDT场景编辑器快速搭建3D应用场景 建 模 和 3D 地形 大多数 3D 对象是 使用建模工具创建&#xff0c;这是有充分理由的。创建复杂对象 &#xff08;如飞机甚至建筑物&#xff09;很难在代码中完成。建模工具 几乎总是有意义的&#xff0c;但也有例外&am…

深入浅出Android同步屏障机制

原文链接 Android Sync Barrier机制 诡异的假死问题 前段时间&#xff0c;项目上遇到了一个假死问题&#xff0c;随机出现&#xff0c;无固定复现规律&#xff0c;大量频繁随机操作后&#xff0c;便会出现假死&#xff0c;整个应用无法操作&#xff0c;不会响应事件&#xff…