【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预测,应用LogisticRegression实现逻辑回归预测,应用DecisionTreeClassifier实现决策树分类,应用RandomForestClassifie实现随机森林算法,应用Kmeans实现聚类任务。

全套笔记和代码自取移步gitee仓库: gitee仓库获取完整文档和代码

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,44 子模块

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.5 kd树

问题导入:

实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。

这在特征空间的维数大及训练数据容量大时尤其必要。

k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。

为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。


1 kd树简介

1.1 什么是kd树

根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)

kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。

这样优化后的算法复杂度可降低到O(DNlog(N))。感兴趣的读者可参阅论文:Bentley,J.L.,Communications of the ACM(1975)。

1989年,另外一种称为Ball Tree的算法,在kd Tree的基础上对性能进一步进行了优化。感兴趣的读者可以搜索Five balltree construction algorithms来了解详细的算法信息。

1.2 原理

image-20190213191654082

黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面。

image-20190213191739222

黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色。

image-20190219101722826

1.树的建立;

2.最近邻域搜索(Nearest-Neighbor Lookup)

kd树(K-dimension tree)是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。

image-20190213223817957

类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了:[0 1 2 3 4 5 6 7 8 9],按前一种方式我们进行了很多没有必要的查找,现在如果我们以5为分界点,那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。

因此,根本就没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面。

2 构造方法

(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;

(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。

(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

(4)通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。

3 案例分析

3.1 树的建立

给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树。

image-20190219102142984

(1)思路引导:

根结点对应包含数据集T的矩形,选择x(1)轴,6个数据点的x(1)坐标中位数是6,这里选最接近的(7,2)点,以平面x(1)=7将空间分为左、右两个子矩形(子结点);接着左矩形以x(2)=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的x(2)坐标中位数正好为4),右矩形以x(2)=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树。

image-20190219102409567

3.2 最近领域的搜索

假设标记为星星的点是 test point, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来。

image-20190213224152601

样本集{(2,3),(5,4), (9,6), (4,7), (8,1), (7,2)}

3.2.1 查找点(2.1,3.1)

image-20190213224414342

在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4), (2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为0.141;

然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了。

于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141。

3.2.2 查找点(2,4.5)

image-20190219103050940

在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202;

然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04。

回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)

回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索。

至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2,4.5)的最近邻点,最近距离为1.5。

4 总结

首先通过二叉树搜索(比较待查询节点和分裂节点的分裂维的值,小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点),顺着“搜索路径”很快能找到最近邻的近似点,也就是与待查询点处于同一个子空间的叶子结点;

然后再回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索(将其他子结点加入到搜索路径)。

重复这个过程直到搜索路径为空。

未完待续, 同学们请等待下一期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/686679.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

房屋租赁系统的Java实战开发之旅

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

第11章 GUI

11.1 Swing概述 Swing是Java语言开发图形化界面的一个工具包。它以抽象窗口工具包&#xff08;AWT&#xff09;为基础&#xff0c;使跨平台应用程序可以使用可插拔的外观风格。Swing拥有丰富的库和组件&#xff0c;使用非常灵活&#xff0c;开发人员只用很少的代码就可以创建出…

免费申请一个美国EDU学生邮箱

EDU邮箱的作用 例如大名鼎鼎的GitHub学生包。包含各种服务器的优惠卷&#xff0c;可以让你免费使用1-2年的服务器。免费的域名。免费的网站证书。太多了。 微软&#xff1a;免费的5T的OneDrive账户。 Google&#xff1a;G Sutie Drive无限容量 微软、苹果、AWS、都有针对学…

二叉树前序中序后序遍历(非递归)

大家好&#xff0c;又和大家见面啦&#xff01;今天我们一起去看一下二叉树的前序中序后序的遍历&#xff0c;相信这个对大家来说是信手拈来&#xff0c;但是&#xff0c;今天我们并不是使用常见的递归方式来解题&#xff0c;我们采用迭代方式解答。我们先看第一道前序遍历 1…

CCF编程能力等级认证GESP—C++6级—20231209

CCF编程能力等级认证GESP—C6级—20231209 单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09;判断题&#xff08;每题 2 分&#xff0c;共 20 分&#xff09;编程题 (每题 25 分&#xff0c;共 50 分)闯关游戏工作沟通 答案及解析单选题判断题编程题1编程题2 单选题…

js中数字精度丢失问题详解(如何解决)

文章目录 一、场景复现二、浮点数三、问题分析小结 四、解决方案参考文献 一、场景复现 一个经典的面试题 0.1 0.2 0.3 // false为什么是false呢? 先看下面这个比喻 比如一个数 130.33333333...... 3会一直无限循环&#xff0c;数学可以表示&#xff0c;但是计算机要存…

mysql 2-17

UNION关键字和UNION ALL 自然连接 USING使用 函数 单行函数 基本函数 三角函数 指数和对数 进制间的转换 字符串函数 时间和日期函数 计算日期和时间的函数 日期的格式化和解析 流程控制函数

《剑指 Offer》专项突破版 - 面试题 47 : 二叉树剪枝(C++ 实现)

题目链接&#xff1a;LCR 047. 二叉树剪枝 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 一棵二叉树的所有节点的值要么是 0 要么是 1&#xff0c;请剪除该二叉树中所有节点的值全都是 0 的子树。例如&#xff0c;在剪除下图 (a) 中二叉树中所有节点值都为 0 的…

【NI-DAQmx入门】处理数据采集和测试系统中噪声的几种主要方法

在实际的测试系统中测量模拟信号并不总是像将信号源连接到测量设备那么简单。数据完整性取决于被控制和监视的电气设备发送和接收的干净的电信号。 电噪声可能会掩盖电信号并使其无法识别&#xff0c;从而损害原本具备功能的 DAQ 系统。数据采集​​是关键任务应用测试系统的一…

C++模板详解 —— 函数模板与类模板

C模板详解 泛型编程函数模板函数模板的概念函数模板的原理 函数模板的实例化函数模板的匹配原则类模板类模板的定义格式类模板的实例化 泛型编程 如果让你编写一个函数&#xff0c;用于两个数的交换。在C语言中&#xff0c;我们会用如下方法&#xff1a; void Swapi(int* p1,…

在PyTorch中,如何查看深度学习模型的每一层结构?

这里写目录标题 1. 使用print(model)2. 使用torchsummary库3.其余方法&#xff08;可以参考&#xff09; 在PyTorch中&#xff0c;如果想查看深度学习模型的每一层结构&#xff0c;可以使用print(model)或者model.summary()&#xff08;如果你使用的是torchsummary库&#xff0…

2024.2.17每日一题

LeetCode N 叉树的层序遍历 429. N 叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定一个 N 叉树&#xff0c;返回其节点值的层序遍历。&#xff08;即从左到右&#xff0c;逐层遍历&#xff09;。 树的序列化输入是用层序遍历&#xff0c;每组子节点…

机试复习-4

1.string类 string类型和数值的转换 ※数值→字符串 to_string函数 //具体做法 int i1234; string gto_string(i);//这样就转成字符串1234了 //下面就是字符串转为数字&#xff0c;类似下面还有stof,stoi,stod string d "1289347647"; int j stoi(d); cout <…

线索化二叉树(先序,中序,后序)+线索化二叉树的遍历【java详解】

目录 线索化二叉树的基本介绍&#xff1a; 举个栗子&#xff1a; 二叉树的中序线索化&#xff1a; 创建HeroNode类&#xff0c;表示节点信息&#xff1a; 编写中序线索化方法代码&#xff1a; 中序线索化遍历代码&#xff1a; 测试代码&#xff1a; 测试结果&#xff1a…

OpenHarmony系统解决方案 - 配置屏幕方向导致开机动画和Launcher显示异常

问题环境 系统版本&#xff1a;OpenHarmony-3.2-Release 问题现象 配置设备默认方向&#xff0c;例如修改为横屏显示&#xff0c;修改文件display_manager_config.xml的buildInDefaultOrientation参数值为2(Orientation::HORIZONTAL)。 源码中文件位于foundation/window/win…

在 Geoserver 中添加自定义的室内坐标系

要在 Geoserver 中添加自定义的室内坐标系&#xff0c;您需要在数据目录中的 user_projections 文件夹下创建或编辑一个 epsg.properties 文件&#xff0c;然后在文件末尾添加您的坐标系的定义&#xff0c;使用 WKT&#xff08;Well-Known Text&#xff09;格式。您还需要为您的…

WordPress站点成功升级后的介绍页地址是什么?

我们一般在WordPress站点后台 >> 仪表盘 >> 更新中成功升级WordPress的话&#xff0c;最后打开的就是升级之后的版本介绍页。比如boke112百科前两天升级到WordPress 6.4.2后显示的介绍页如下图所示&#xff1a; 该介绍除了介绍当前版本修复了多少个问题及修补了多少…

ABC341 A-G

Toyota Programming Contest 2024#2&#xff08;AtCoder Beginner Contest 341&#xff09; - AtCoder B读不懂题卡了&#xff0c;F读假题卡了&#xff0c;开题开慢了rank了 A - Print 341 题意&#xff1a; 打印一串交替出现的包含N个0&#xff0c;N1个1的01串 代码&…

2024免费人像摄影后期处理工具Portraiture4.1

Portraiture作为一款智能磨皮插件&#xff0c;确实为Photoshop和Lightroom用户带来了极大的便利。通过其先进的人工智能算法&#xff0c;它能够自动识别并处理照片中的人物皮肤、头发和眉毛等部位&#xff0c;实现一键式的磨皮美化效果&#xff0c;极大地简化了后期处理的过程。…

Switch开关(antd-design组件库)简单使用

1.Switch开关 开关选择器。 2.何时使用 需要表示开关状态/两种状态之间的切换时&#xff1b; 和 checkbox 的区别是&#xff0c;切换 switch 会直接触发状态改变&#xff0c;而 checkbox 一般用于状态标记&#xff0c;需要和提交操作配合。 组件代码来自&#xff1a; 开关 Swit…